scholarly journals Elaboration of design and calculation of energy and power parameters of a facility for lime unloading from a shaft furnace

Author(s):  
S. P. Eron’ko ◽  
V. L. Danilov ◽  
M. Yu. Tkachev ◽  
V. V. Tinyakov

Operation of shaft furnaces for lime burning in the required technological mode to a great extent is effected by reliability and technical abilities of their finished product unloading systems. A system proposed for unloading a shaft furnace for lime burning, enabling to deliver in a stable mode crashed material providing it has large sintered pieces. The system includes a stationary round table, located symmetrically relating the vertical axis of the furnace body under the conical collector exit opening. The table has four semi-round scraper knives connected by hinges with four pushing rods, acting by drive hydraulic cylinders. Alternately one pair of cylinders is working for pushing, the other – for pulling the rods. It results in the scraper knives making turn motions relatively the table, rolling along its edge and pushing off it bulk material by their back round part. To design a pilot sample of the proposed unloading system for shaft burning furnace, a methodology was elaborated to calculate its power parameters. The methodology takes into account the technological loads, arising at the realization of the process of measured delivery of the burnt lime from the furnace. The proposed methodology enables to determine the required values of pressure and consumption of oil station working liquid. The oil station provide operation of the cinematically interconnected four hydraulic cylinders, which make the two pair of scraper knives moving along a set trajectory on the table surface of the furnace to deliver from it the bulk material. The rightness of the technical solutions applied to the design of the elaborated shaft furnace unloading system as well as the correctness of the proposed theoretical dependences used for calculation of its energy and power parameters, were confirmed by the experiments. The experiments were carried out at an operating physical model, manufactured in the scale 1:10 to the natural facility.

2015 ◽  
Vol 741 ◽  
pp. 500-503 ◽  
Author(s):  
Alexander D. Ishkov ◽  
Dmitri A. Semernin ◽  
Svjatoslav V. Miloradov ◽  
Irina V. Voronina

Submission materials are the main manufacturing operation in the industry. It largely determines the quality parameters of products. Mechanization and automation of bulk material supply operation in the process eliminates human error and improves the product quality. This work was aimed at finding technical solutions that the reduction of specific energy consumption and enhance the reliability of the vibrating and pneumatic feeders. The article describes the developed the authors vibratory and pneumatic feeders.


Author(s):  
Roman Hevko ◽  
Yurii Nykerui ◽  
Taras Dovbush ◽  
Vasyl Oleksyuk

The article provides a theoretical substantiation of the structural parameters of the frame structure for the placement of piece loads, as well as clamping levers with rollers and their arrangement, which interact with the inner surface of the guide ropes of the developed transport system. The established limits of rational parameters and angular positions of levers and their compression springs to the inclined sidewalls for the right and left sides of the movable elements of the frame structure relative to the central vertical axis, as well as the angle of the guide ropes to the horizon. On the basis of the results of calculations and recommendations for the choice of parameters of the proposed technical solutions, a rope mechanism for storing piece loadings into small warehouses was manufactured and preliminary experimental studies were carried out.


2015 ◽  
Vol 5 (1) ◽  
pp. 223-234
Author(s):  
Посметьев ◽  
Viktor Posmetev ◽  
Канищев ◽  
Denis Kanishchev ◽  
Попиков ◽  
...  

Workflow mechanisms of forestry cranes tower rotation are accompanied by large dynamic loads that cause sudden changes in fluid pressure in balancing and braking modes. When the rotary column stops at different positions damping of pressure of the working fluid vibration occurs due to its overflow from one chamber to another through an orifice, wherein the hydraulic energy is transformed into heat one, resulting in overheating and energy loss of fluid. Efficient are energy-saving hydropneumatic drives of column of the manipulator which are able to recover energy during transient conditions and to return some of the energy back into the system. For hydraulic manipulators with four paired hydraulic cylinders of rotation mechanism of the column one pair of cylinders is proposed to be replaced by pneumatic cylinders connected to a rotary column through the gear and toothed rack that allows you to transfer it into recovery mode of energy. A mathematical model of the boom rotation of the manipulator is developed; equations for a hydro pneumatic system recovery are made. In the model three mechanical processes are considered: the rotational movement of the column about the vertical axis of the manipulator, the forward movement of the plunger along the axis of the damper, and sway of the load relative to the attachment point on the manipulator arm. To solve the system of differential equations, computer program for the simulation of hydraulic manipulator equipped with a hydraulic damper is composed. The dependence of the restoring force of the displacement of the toothed rack is get. In the vicinity of the equilibrium position, this dependence is nearly linear over a wide range of rack movement: from about 50 to 180 mm. With significant turns of the column volume of one of the chambers of the air cylinder approaches zero value, whereby the restoring force of the module increases significantly, which helps braking of the column in the final step of rotation and influences the process of energy accumulation.


Author(s):  
T. Baird ◽  
J.R. Fryer ◽  
S.T. Galbraith

Introduction Previously we had suggested (l) that the striations observed in the pod shaped crystals of β FeOOH were an artefact of imaging in the electron microscope. Contrary to this adsorption measurements on bulk material had indicated the presence of some porosity and Gallagher (2) had proposed a model structure - based on the hollandite structure - showing the hollandite rods forming the sides of 30Å pores running the length of the crystal. Low resolution electron microscopy by Watson (3) on sectioned crystals embedded in methylmethacrylate had tended to support the existence of such pores.We have applied modern high resolution techniques to the bulk crystals and thin sections of them without confirming these earlier postulatesExperimental β FeOOH was prepared by room temperature hydrolysis of 0.01M solutions of FeCl3.6H2O, The precipitate was washed, dried in air, and embedded in Scandiplast resin. The sections were out on an LKB III Ultramicrotome to a thickness of about 500Å.


Author(s):  
S. Herd ◽  
S. M. Mader

Single crystal films in (001) orientation, about 1500 Å thick, were produced by R-F sputtering of Al + 4 wt % Cu onto cleaved KCl at 150°C substrate temperature. The as-deposited films contained numerous θ-CuAl2 particles (C16 structure) about 0.1μ in size. They were transferred onto Mo screens, solution treated and rapidly cooled (within about ½ min) so as to retain a homogeneous solid solution. Subsequently, the films were aged in vacuum at various temperatures in order to induce precipitation and to compare structures and morphologies of precipitate particles in Al-Cu films with those found in age hardened bulk material.Aging for 3 weeks at 60°C or 48 hrs at 100°C did not produce any detectable change in high resolution micrographs or diffraction patterns. In this range Guinier-Preston zones (GP) form in quenched bulk material. The absence of GP in the present experiments in this aging range is perhaps due to the cooling rate employed, which might be more equivalent to an aged and reverted bulk material than to a quenched one.


Author(s):  
H. Seiler ◽  
U. Haas ◽  
K.H. Körtje

The physical properties of small metal particles reveal an intermediate position between atomic and bulk material. Especially Ag has shown pronounced size effects. We compared silver layers evaporated in high vacuum with cluster layers of small silver particles, evaporated in N2 at a pressure of about 102 Pa. The investigations were performed by electron optical methods (TEM, SEM, EELS) and by Photoacoustic (PA) Spectroscopy (gas-microphone detection).The observation of cluster layers with TEM and high resolution SEM show small silver particles with diameters of about 50 nm (Fig. 1 and Figure 2, respectively). The electron diffraction patterns of homogeneous Ag layers and of cluster layers are similar, whereas the low loss EELS spectra due to plasmon excitation are quite different. Fig. 3 and Figure 4 show first results of EELS spectra of a cluster layer of small silver particles on carbon foil and of a homogeneous Ag layer, respectively.


Author(s):  
Daniel Callahan ◽  
G. Thomas

Oxygen impurities may significantly influence the properties of nitride ceramics with a strong dependence on the microstructural distribution of the impurity. For example, amorphous oxygen-rich grain boundary phases are well-known to cause high-temperature mechanical strength degradation in silicon nitride whereas solutionized oxygen is known to decrease the thermal conductivity of aluminum nitride. Microanalytical characterization of these impurities by spectral methods in the AEM is complicated by reactions which form oxygen-rich surface phases not representative of the bulk material. Furthermore, the impurity concentrations found in higher quality ceramics may be too low to measure by EDS or PEELS. Consequently an alternate method for the characterization of impurities in these ceramics has been investigated.Convergent beam electron diffraction (CBED) is a promising technique for the study of impurity distributions in aluminum nitride ceramics. Oxygen is known to enter into stoichiometric solutions with AIN with a consequent decrease in lattice parameter.


Author(s):  
K.-H. Herrmann ◽  
W. D. Rau ◽  
R. Sikeler

Quantitative recording of electron patterns and their rapid conversion into digital information is an outstanding goal which the photoplate fails to solve satisfactorily. For a long time, LLL-TV cameras have been used for EM adjustment but due to their inferior pixel number they were never a real alternative to the photoplate. This situation has changed with the availability of scientific grade slow-scan charged coupled devices (CCD) with pixel numbers exceeding 106, photometric accuracy and, by Peltier cooling, both excellent storage and noise figures previously inaccessible in image detection technology. Again the electron image is converted into a photon image fed to the CCD by some light optical transfer link. Subsequently, some technical solutions are discussed using the detection quantum efficiency (DQE), resolution, pixel number and exposure range as figures of merit.A key quantity is the number of electron-hole pairs released in the CCD sensor by a single primary electron (PE) which can be estimated from the energy deposit ΔE in the scintillator,


Author(s):  
P. Fraundorf ◽  
J. Tentschert

Since the discovery of their etchability in the early 1960‘s, nuclear particle tracks in insulators have had a diverse and exciting history of application to problems ranging from the selective filtration of cancer cells from blood to the detection of 244Pu in the early solar system. Their usefulness stems from the fact that they are comprised of a very thin (e.g. 20-40Å) damage core which etches more rapidly than does the bulk material. In fact, because in many insulators tracks are subject to radiolysis damage (beam annealing) in the transmission electron microscope, the body of knowledge concerning etched tracks far outweighs that associated with latent (unetched) tracks in the transmission electron microscope.With the development of scanned probe microscopies with lateral resolutions on the near atomic scale, a closer look at the structure of unetched nuclear particle tracks, particularly at their point of interface with solid surfaces, is now warranted and we think possible. The ion explosion spike model of track formation, described loosely, suggests that a burst of ionization along the path of a charged particle in an insulator creates an electrostatically unstable array of adjacent ions which eject one another by Coulomb repulsion from substitutional into interstitial sites. Regardless of the mechanism, the ejection process which acts to displace atoms along the track core seems likely to operate at track entry and exit surfaces, with the added feature of mass loss at those surfaces as well. In other words, we predict pits whose size is comparable to the track core width.


Author(s):  
Jovan Vukovié

Conventional electron microscope TEM -100 (Made by “ELECTRON”, Sumy, USSR; Fig. 1) was presented at the XI Int. Congress on Electron Microscopy (Kyoto) by I.S. Lyalko et al. (1,2). The purpose of the microscope constructors were to design a small-sized general conventional TEM for various application fields. The microscope have mini lenses, which winding is placed in closed casing and soaked in working liquid (low boiling temperature) but upper part of the casing being water cooled.In this communication we gave our first experience and impression as a customer, beginning from the montage, the instruction and the testing of the microscope to our application in the field of biological specimens. Just after montage of the microscope on the second floor, the test of the point resolution power was performed by Ir specimen. It was achieved 0.5 nm (Fig. 2 and 3) on the roll film (ORWO 22 DIN) with 300 OOOx magnification and anticontamination device. The ultimate vacuum (about 10exp-6 mm Hg, ion discharge pump) also achieved using large trap cooled by liquid nitrogen.


Sign in / Sign up

Export Citation Format

Share Document