Prospects of steel industry development accounting ecological restrictions

Author(s):  
S. V. Nedelin

Discussion of many years on consequences of man’s activity effect on environment at present moved to a practical aspect. New ecological and economical limits dictate a necessity to reduce the carbon intensity of metallurgical processes. It was noted that the technological couple “blast furnace – basic oxygen furnace” is a basic method of steel production, based on utilization of coke as a fuel and reducing component. Distribution of metallurgical capacities by types of fuel used shown, which confirms application of carbon-containing fuel-reducing additions in overwhelming majority of technological processes of iron production. Data on projects reducing carbon intensity of metallurgical industry presented, most of which aimed at changing the technology of BF process. Experience of steel industry of Japan on perfection machinery and technology of BF production considered, which enabled to reduce total consumption of reducing agents down to figure less down to 450 kg/t of hot metal, which is the best index among countries of the world. It was shown that increase of a blast furnace volume results in change of BF process technology. Such an increase also results in decrease of carbon consumption – blast furnaces of large volume have lower specific consumption of fuel and reducing agent. The specific coke rate in blast furnaces of large volume is by 71 kg/t of hot metal less comparing with blast furnaces having volume less 1000 m3, and the total fuel consumption in large blast furnaces is by 51 kg/t of hot metal lower. Accounting necessity to decrease the carbon footprint in steel products, basic ways of steel industry technologies development can be enlargement of facilities with shutdown of small and not effective capacities, changing sinter and BF charges structure with increase of more qualitative raw materials and pellets, application of alternative kinds of fuel and reducing additions.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


Author(s):  
V. T. Stefanenko ◽  
A. V. Stefanenko ◽  
N. P. Popova

Casting yards of blast furnaces are most powerful sources of atmospheric air pollution among big non-organized pollution sources of steel industry. The task to create effective systems of those sources aspiration is rather actual.Analysis of known technical solutions on blast furnace casting yards aspiration presented. Positive and negative sides of the projects determined. A conclusion made that aspiration systems effectiveness is determined by designs of local suction facilities and covers for localization of emitted dust and gas convection flows. Main directions of effective aspiration system creation formulated. At the example of JSC MMK BFs No. 9 and No. 10, four variants of technical solutions of general aspiration system for casting yards quoted, accompanied by calculation of convection flows and emissions volumes, maximum necessary productivity of aspiration facility and aero dynamical calculation of an aspiration system. Plan and algorithms of the system valves operation studied. Effectiveness of localization (capture degree) of non-organized emissions estimated as about 90%.


2021 ◽  
Vol 4 (2) ◽  
pp. 38-51
Author(s):  
Chitresh Kundu ◽  
Prabal Patra ◽  
Bipan Tudu ◽  
Dibyayan Patra

Blast furnaces (BFs) are the key receptacles of iron and steel smelting. Iron ore, coke and limestone are some of the raw materials that are used in the process of iron making and the charging operation needs to be accomplished by accurately estimating the current depth of the burden surface. To accomplish the goal of global class steel production, burden profile measurement and monitoring is vital. This measuring and monitoring help in augmenting the best usage of charge materials and energy consumptions. Radar based measurement is best for determine the level and profile of the burden inside the furnace. However, for the optimal operation of the radar, it is important know the dielectric constant of the material. There are many approaches to determine the dielectric constant like capacitive methods, transmission line methods, cavity resonator methods, open cavity methods and so on. For this study the cavity resonator method is has been used for measuring the permittivity of coal samples. The reflection capability of electromagnetic waves by coal is a function of its dielectric properties which is also has a dependency on temperature. The results presented in this paper will provide essential design input for radar-based measurements at blast furnace, especially for burden profiling at blast furnaces.


2020 ◽  
Vol 299 ◽  
pp. 518-523
Author(s):  
Nikolay Spirin ◽  
Oleg Onorin ◽  
Alexander Istomin

The paper gives a general description of the dynamic model of the blast-furnace process that enables to calculate transition processes of the blast furnace thermal state, evaluated by the content of silicon in hot metal. It provides calculation results of the transition processes to be subjected to changes in control actions: ore load from the top and oxygen concentration in blast, natural gas flow rate and hot blast temperature from the bottom. Specific features of these transition processes during blast-furnace smelting are analyzed. The paper shows that the dynamic characteristics of blast furnaces change are subjected to control actions and depend significantly on properties of melted raw materials and operating parameters of blast furnaces. The oscillatory transition process in the blast furnace is observed in the case after disturbance it has an opposite influence on the thermal state of the lower and uppers stages of heat exchange. The paper presents prediction results of the silicon content in hot metal. It gives practical recommendations for selection of control actions.


Author(s):  
V. V. Panteleev ◽  
K. B. Pykhteeva ◽  
M. V. Polovets ◽  
K. V. Mironov ◽  
S. A. Zagainov

To make high-quality steel, it is necessary to ensure low sulfur content in the hot metal entering a steelmaking shop. The task to obtain low sulfur metal can be solved either during blast furnace smelting or its ladle desulfurization immediately after tapping out of blast furnace. Under conditions of JSC EVRAZ NTMK, the ladle desulfurization of vanadium hot metal is not applied, since it leads to a loss of vanadium. Is explained by the fat, that calcium oxide forms with V2O5 a strong calcium vanadate (3СаО·V2O5), which makes the process of vanadium recovery during further slag processing more complicated. Therefore the ladle desulfurization is accomplished after devanadation of hot metal. After the devanadation the semi-product has ions of oxygen, which makes it impossible to arrange an effective desulfurization and males it necessary to smelt the hot metal with limited sulfur content. The factors, effecting the process of hot metal desulfurization in a blast furnace, including slag basicity, MgO content in it, temperature of smelting products and slag viscosity, are presented. Dependence of distribution coefficient of sulfur on slag basicity has been shown. Research goal is pig iron desulphurization efficiency estimation by means of MgO increasing in slag. Data analysis findings about smelting products composition over 500 tappings for each of two investigated JSC EVRAZ NTMK blast furnaces have been reported. The aim of the study was comparison of hot metal desulphurization efficiency due to both slag basicity increase and MgO increase in slag. Results of data analysis on smelting products composition of over 500 heats for each of two investigated JSC EVRAZ NTMK blast furnaces have been presented. It was established that a sulfur content decrease in hot metal is achieved more effectively by MgO increase in slag. It has been shown that MgO has better desulfurizing properties, and with an increase of its content in the blast furnace slag, the overall technology for running the blast furnace process improves. It was recommended to increase the consumption of materials containing MgO while maintaining basicity at a constant level. Such a technology will allow to decrease sulfur content in hot metal, as well as will result in the process stabilization providing other conditions being equal.


2014 ◽  
Vol 787 ◽  
pp. 102-105 ◽  
Author(s):  
Jiang Yuan Hu ◽  
Feng Gao ◽  
Zhi Hong Wang ◽  
Xian Zheng Gong

Based on life cycle assessment, analysis of energy consumption and other environment load by steel production in Chinese typical iron and steel industry was carried out. The process accounted for the most environment load was found by studying the different processes in steel production route. The results indicate that the most important process is blast furnace (BF) which is the major factor of CO2 and CO emissions, and contributes most to globe warming potential (GWP) and photochemical ozone creation potential (POCP).


2018 ◽  
Vol 4 (11) ◽  
pp. 6
Author(s):  
Upendra Kumar ◽  
Avinash Patidar ◽  
Bhupendra Koshti

The design and control of blast furnace (BF) ironmaking must be optimized in order to be competitive and sustainable, particularly under the more and more demanding and tough economic and environmental conditions. To achieve this, it is necessary to understand the complex multiphase flow, heat and mass transfer, and global performance of a BF. In this paper injection of alternative reducing agents via lances in the tubers of blast furnaces is discussed to reduce the consumption of metallurgical coke. Besides liquid hydrocarbons and pulverized coal the injection of recycled waste plastics is possible, offering the opportunity to chemically reuse waste material and also utilize the energy contained in such remnants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Wang ◽  
Morten Ryberg ◽  
Yi Yang ◽  
Kuishuang Feng ◽  
Sami Kara ◽  
...  

AbstractSteel production is a difficult-to-mitigate sector that challenges climate mitigation commitments. Efforts for future decarbonization can benefit from understanding its progress to date. Here we report on greenhouse gas emissions from global steel production over the past century (1900-2015) by combining material flow analysis and life cycle assessment. We find that ~45 Gt steel was produced in this period leading to emissions of ~147 Gt CO2-eq. Significant improvement in process efficiency (~67%) was achieved, but was offset by a 44-fold increase in annual steel production, resulting in a 17-fold net increase in annual emissions. Despite some regional technical improvements, the industry’s decarbonization progress at the global scale has largely stagnated since 1995 mainly due to expanded production in emerging countries with high carbon intensity. Our analysis of future scenarios indicates that the expected demand expansion in these countries may jeopardize steel industry’s prospects for following 1.5 °C emission reduction pathways. To achieve the Paris climate goals, there is an urgent need for rapid implementation of joint supply- and demand-side mitigation measures around the world in consideration of regional conditions.


2021 ◽  
Vol 13 (14) ◽  
pp. 7706
Author(s):  
Tova Jarnerud ◽  
Andrey V. Karasev ◽  
Chuan Wang ◽  
Frida Bäck ◽  
Pär G. Jönsson

A six day industrial trial using hydrochar as part of the carbon source for hot metal production was performed in a production blast furnace (BF). The hydrochar came from two types of feedstocks, namely an organic mixed biosludge generated from pulp and paper production and an organic green waste residue. These sludges and residues were upgraded to hydrochar in the form of pellets by using a hydrothermal carbonization (HTC) technology. Then, the hydrochar pellets were pressed into briquettes together with commonly used briquetting material (in-plant fines such as fines from pellets and scraps, dust, etc. generated from the steel plant) and the briquettes were top charged into the blast furnace. In total, 418 tons of hydrochar briquettes were produced. The aim of the trials was to investigate the stability and productivity of the blast furnace during charging of these experimental briquettes. The results show that briquettes containing hydrochar from pulp and paper industries waste and green waste can partially be used for charging in blast furnaces together with conventional briquettes. Most of the technological parameters of the BF process, such as the production rate of hot metal (<1.5% difference between reference days and trial days), amount of dust, fuel rate and amount of injected coal, amount of slag, as well as contents of FeO in slag and %C, %S and %P in the hot metal in the experimental trials were very similar compared to those in the reference periods (two days before and two days after the trials) without using these experimental charge materials. Thus, it was proven that hydrochar derived from various types of organic residues could be used for metallurgical applications. While in this trial campaign only small amounts of hydrochar were used, nevertheless, these positive results support our efforts to perform more in-depth investigations in this direction in the future.


Sign in / Sign up

Export Citation Format

Share Document