scholarly journals Effects of phenotype- and condition-dependent factors on juvenile dispersal of the ringed salamander (Ambystoma annulatum)

2016 ◽  
Author(s):  
◽  
Brittany Hunter Ousterhout

Dispersal is the movement of individuals from their natal population to a different breeding population. Long distance dispersal movements are rare, with most individuals staying within their natal population (hereafter residents). The frequency with which individuals disperse to new population or settle near natal sites has strong consequences for individual survival and fitness, as well as ecological and evolutionary processes. Despite the importance of dispersal, there have been limited empirical tests of the factors affect whether an individual disperses or is philopatric. This is particularly true for amphibians of the family Ambystomatidae. These pond-breeding salamanders have complex life cycles, with aquatic larvae and terrestrial juveniles and adults. Despite abundant research on the breeding migrations and larval life stage of these salamanders, factors affecting juvenile dispersal remain poorly resolved. This is particularly true for phenotype-dependent factors, such as body size and body condition, which are generally controlled for rather than manipulated. An understanding of factors driving dispersal in Ambystomatidae is critically needed. One-third of all amphibians are currently threatened with extinction due to habitat loss and fragmentation, and climate change. By understanding the factors that affect dispersal in this family of salamanders, we can manage at the individual, population, and metapopulation level. My dissertation research used laboratory and field experiments to measure effects of phenotype- and condition-dependent factors on movement in a mole salamander (Ambystoma annulatum). The primary objectives of my study were to 1) describe the effect of natal density on juvenile phenotype, and 2) determine the effect of individual variation in phenotype-dependent factors (i.e., behavior, morphology, and body condition) and condition-dependent factors (i.e., natal population density and juvenile habitat quality) on dispersal. To identify the effects of natal population density on juvenile phenotype, I conducted a replicated pond mesocosm experiment. I manipulated the density of ringed salamanders (Ambystoma annulatum) over 10 levels and compared the model fit of four functional forms of body size, body condition, date of metamorphosis survival, and percent lipids. In general, I found support for non-additive density dependence, with the negative impact of each additional individual decreasing in magnitude as density increased. After measuring the effect of natal conditions on juvenile phenotype, I conducted a series of experiments to describe the effect of phenotype- and condition dependent factors. I reared salamanders from larvae under different natal densities, resulting in juveniles that different in the conditions they experienced (i.e., natal density), as well as their body size, condition, and morphology. I also measured the exploration behavior of individuals. Using PIT telemetry, I tracked the initial movement of juvenile salamanders in two different habitat conditions (forest and field habitat). I found that both phenotype- and condition-dependent factors affect juvenile dispersal. I also found an interaction between these two types of factors, suggesting that redundant cues over ontogeny affect dispersal. Collectively, these studies indicate that both aquatic natal habitat and its effects on juvenile phenotype, as well as juvenile terrestrial habitats should be considered when managing amphibian populations and metapopulations.

2015 ◽  
Vol 282 (1812) ◽  
pp. 20150832 ◽  
Author(s):  
Johanna Chemnitz ◽  
Petra C. Jentschke ◽  
Manfred Ayasse ◽  
Sandra Steiger

Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load—key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4721 ◽  
Author(s):  
Mariela Schenk ◽  
Oliver Mitesser ◽  
Thomas Hovestadt ◽  
Andrea Holzschuh

Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees (Osmia cornuta and O. bicornis), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Morel-Journel ◽  
E. Vergu ◽  
J.-B. Mercier ◽  
N. Bareille ◽  
P. Ezanno

AbstractThe transport of weaned calves from cow–calf producers to fatteners is a general concern for the young bull industry due to its documented negative impact on the welfare, health and performance of the animals. These transfers are often managed by intermediaries who transport weaned calves to sorting centres, where they are grouped into batches before being sent to fattening units. In this study, we present an algorithm to limiting these transfer distances by appropriately selecting the sorting centre through which they must go. We tested the effectiveness of this algorithm on historical data from a French beef producer organization managing 136,892 transfers using 13 sorting centres. The results show a decrease in the transfer distances compared to the historical record, especially for the calves travelling over long distances (− 76 km, i.e. 18% on average for the 33% longest transfers). Moreover, the distribution of calves between the sorting centres proposed by the algorithm reveals differences in their efficiency in minimizing transfer distances. In addition to its usefulness as a management tool for the daily transport of cattle, this algorithm provides prospects for improving the management of the sorting centres themselves.


Author(s):  
Grigoriy Leonidovich Belov ◽  
Vladimir Nikolaevich Zeyruk ◽  
Vladimir Anatolyevich Barkov ◽  
Marina Konstantinovna Derevyagina ◽  
Svetlana Viktorovna Vasilieva

In field experiments in the conditions of sod-podzolic sandy loam soils of the Moscow region, protectants were tested. Before planting potatoes, tubers were treated with a new two-component insectofungicide AVG – 0190 (Idikum, SC, iprodion, 133 g/l + Imidacloprid, 100 g/l + diphenoconazole, 6.7 g/l)-1.0 – 1.5 l/t and a mixture of the fungicide Syncler, SC (75 g/l fludioxonyl) and the insecticide Tabu Super, SC (Imidacloprid, 400 g/l and fipronil, 100 g/l)-0.2-0.3 l/t. According to the results of three-year tests, it was found that the etching of potato tubers before planting does not have a negative impact on the germination and biometric indicators of growth and development of potatoes. Their use helped to reduce the development and spread of rhizoctoniosis and provided almost complete protection of potatoes from the first generation of the Colorado beetle – during the mass appearance of older larvae and during the beginning of the departure of larvae for pupation. Biological efficacy against Rhizoctonia amounted to 58.8-66,3%, the Colorado potato beetle – 93,7 95.5 per cent. The use of new potato tuber protectants allowed to increase the gross yield by 6.2-7.1 t / ha or 30.9-35.3% compared to the control. Treatment of seed tubers with protectants helped to obtain a crop free from rhizoctoniosis and increase the yield of standard healthy potatoes by 57.7


2017 ◽  
Vol 114 (14) ◽  
pp. 3690-3695 ◽  
Author(s):  
Eija Lonn ◽  
Esa Koskela ◽  
Tapio Mappes ◽  
Mikael Mokkonen ◽  
Angela M. Sims ◽  
...  

Most variation in behavior has a genetic basis, but the processes determining the level of diversity at behavioral loci are largely unknown for natural populations. Expression of arginine vasopressin receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions of the brain regulates diverse social and reproductive behaviors in mammals, including humans. That these genes have important fitness consequences and that natural populations contain extensive diversity at these loci implies the action of balancing selection. In Myodes glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite locus located in their 5′ regulatory region (the regulatory region-associated microsatellite, RRAM) that likely regulates gene expression. To test the hypothesis that balancing selection maintains diversity at behavioral loci, we released artificially bred females and males with different RRAM allele lengths into field enclosures that differed in population density. The length of Avpr1a and Oxtr RRAMs was associated with reproductive success, but population density and the sex interacted to determine the optimal genotype. In general, longer Avpr1a RRAMs were more beneficial for males, and shorter RRAMs were more beneficial for females; the opposite was true for Oxtr RRAMs. Moreover, Avpr1a RRAM allele length is correlated with the reproductive success of the sexes during different phases of reproduction; for males, RRAM length correlated with the numbers of newborn offspring, but for females selection was evident on the number of weaned offspring. This report of density-dependence and sexual antagonism acting on loci within the arginine vasopressin–oxytocin pathway explains how genetic diversity at Avpr1a and Oxtr could be maintained in natural populations.


2015 ◽  
Vol 95 (8) ◽  
pp. 1607-1612 ◽  
Author(s):  
E.S. Mekhova ◽  
P.Y. Dgebuadze ◽  
V.N. Mikheev ◽  
T.A. Britayev

Previous experiments with the comatulid Himerometra robustipinna (Carpenter, 1881) demonstrated intensive host-to-host migration processes for almost all symbiotic species both within host aggregations and among hosts separated by several metres. The aim of this study was to check the ability of symbionts to complete long-distance migrations, by means of two in situ experiments which depopulated the crinoid host. Two different sets of field experiments were set up: exposure of depopulated crinoids (set 1) on stony ‘islands’ isolated from native crinoid assemblages by sandy substrate, and (set 2) in cages suspended in the water column. Hosts from set 1 were exposed for 1, 2, 3 and 4 weeks to assess whether substrate has an influence on the symbionts' long-distance migrations. In set 2 cages were exposed for 10–11 days, aiming to check whether symbionts were able to disperse through the water column with currents. These experiments allow the conclusion that post-settled symbionts can actively migrate among their hosts. Symbionts are able to reach their hosts by employing two different ‘transport corridors’, by drifting or swimming in water column, and by moving on the bottom. Comparison of experimental results allows the division of symbionts into two conventional groups according to the dispersal ability of their post-settled stages: (1) species able to complete long-distance migrations, (2) species unable to migrate or having limited dispersal ability. The finding of the free-living shrimp Periclimenes diversipes Kemp, 1922 in set 2 raises the question about the factors that affect such a high degree of specialization of crinoid assemblages.


2020 ◽  
Vol 84 (5) ◽  
pp. 938-947
Author(s):  
Pascale Ayotte ◽  
Mael Le Corre ◽  
Steeve D. Côté

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2208
Author(s):  
Bernice Goffin ◽  
Marcial Felgueiras ◽  
Anouschka R. Hof

Many long-distance migratory bird species are in decline, of which environmental changes, such as climate change and land-use changes, are thought to be important drivers. The effects of environmental change on the migration of these birds have often been studied during spring migration. Fewer studies have explored the impacts of environmental change on autumn migration, especially at stopover sites. However, stopover sites are important, as the quality of these sites is expected to change over time. We investigated impacts of local environmental conditions on the migration strategy and body condition of the Pied Flycatcher (Ficedula hypoleuca) at an autumn migration stopover site using long-term ringing data (1996–2018) and local environmental conditions. We found that although the arrival and departure dates of birds at the stopover site remained unchanged, the body condition (fat score) of the individuals caught decreased, and the stopover duration increased. This suggests that conditions at the stopover site during the autumn migration period have deteriorated over time. This study emphasizes the importance of suitable stopover sites for migratory birds and stresses that changes in environmental conditions during the autumn migration period may be contributing to the current decline in long-distance migratory passerines.


1977 ◽  
Vol 24 (3) ◽  
pp. 377-385 ◽  
Author(s):  
M. J. Ducker ◽  
J. S. Boyd

SUMMARYBody size was estimated for 255 Greyface ewes using five linear body dimensions. On the basis of this calculated measure combined with a subjective measure of body size 50 small and 50 large ewes were selected for use in the experiment. Precise ovulation data were obtained by endoscopy and this technique allowed the ewes to be mated subsequently.Body size did not affect the mean ovulation rate of the ewes although, at the same level of body condition, the large ewes were 25% heavier than the small ewes. The ovulation rates and the numbers of lambs born were influenced by changes in live weight and body condition. For these reasons live weight per se was not a good indicator of ovulation rate as ewe live weight was a combination of both body size and body condition. At the same live weight small ewes in improving body condition had a significantly higher ovulation rate than large ewes in reducing body condition.The onset of the breeding season of the ewes was not affected by their body size. The mean date of onset of oestrous activity for both large and small ewes was 17 October 1972 at a latitude 55° 52′ N.


Sign in / Sign up

Export Citation Format

Share Document