scholarly journals Zika Virus

Author(s):  
Marciano Paes ◽  
Kíssila Rabelo

Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, β-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6h and 24h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to being a major contributor in the spread of the virus in cases of vertical transmission.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 975 ◽  
Author(s):  
Kíssila Rabelo ◽  
Antônio José da Silva Gonçalves ◽  
Luiz José de Souza ◽  
Anna Paula Sales ◽  
Sheila Maria Barbosa de Lima ◽  
...  

Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24 h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, β-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6 h and 24 h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to be a major contributor in the spread of the virus in cases of vertical transmission.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


2021 ◽  
Author(s):  
Elizabeth E. McCarthy ◽  
Pamela M. Odorizzi ◽  
Emma Lutz ◽  
Carolyn P. Smullin ◽  
Iliana Tenvooren ◽  
...  

Although the formation of a durable neutralizing antibody response after an acute viral infection is a key component of protective immunity, little is known about why some individuals generate high versus low neutralizing antibody titers to infection or vaccination. Infection with Zika virus (ZIKV) during pregnancy can cause devastating fetal outcomes, and efforts to understand natural immunity to this infection are essential for optimizing vaccine design. In this study, we leveraged the high-dimensional single-cell profiling capacity of mass cytometry (CyTOF) to deeply characterize the cellular immune response to acute and convalescent ZIKV infection in a cohort of blood donors in Puerto Rico incidentally found to be viremic during the 2015-2016 epidemic in the Americas. During acute ZIKV infection, we identified widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated innate immune subsets, as well as activated follicular helper CD4+ T cells and proliferating CD27-IgD- B cells, during acute infection were associated with high titers of ZIKV neutralizing antibodies at 6 months post-infection. On the other hand, low titers of ZIKV neutralizing antibodies were associated with immune features that suggested a cytotoxic-skewed immune "set-point." Our study offers insight into the cellular coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials for ZIKV and other acute viral infections aimed at inducing high titers of neutralizing antibodies.


Author(s):  
Kíssila Rabelo ◽  
Antônio José da Silva Gonçalves ◽  
Luiz José de Souza ◽  
Anna Paula Sales ◽  
Sheila Maria Barbosa de Lima ◽  
...  

2019 ◽  
Author(s):  
Kelsey E. Lesteberg ◽  
Dana S. Fader ◽  
J. David Beckham

AbstractRecent outbreaks of Zika virus (ZIKV) have been associated with birth defects, including microcephaly and neurological impairment. However, the mechanisms which confer increased susceptibility to ZIKV during pregnancy remain unclear. We hypothesized that poor outcomes from ZIKV infection during pregnancy are due in part to pregnancy-induced alteration of innate immune cell frequencies and cytokine expression. To examine the impact of pregnancy on innate immune responses, we inoculated pregnant and non-pregnant female C57BL/6 mice with 5×105 FFU of ZIKV intravaginally. Innate immune cell frequencies and cytokine expression were measured by flow cytometry at day 3 post infection. Compared to non-pregnant mice, pregnant mice exhibited higher frequencies of uterine macrophages (CD68+) and tolerogenic dendritic cells (CD11c+ CD103+ and CD11c+ CD11b+). Additionally, ZIKV-infected pregnant mice had lower frequencies of CD45+ IL-12+ and CD11b+ IL-12+ cells in the uterus and spleen. These data show that pregnancy results in an altered innate immune response to ZIKV infection in the genital tract of mice and that pregnancy-associated immune modulation may play an important role in the severity of acute ZIKV infection.ImportancePregnant females longer duration that viremia following infection with Zika virus but the mechanism of this is not established. Innate immune cellular responses are important for controlling virus infection and are important for development and maintenance of pregnancy. Thus, the acute immune response to Zika virus during pregnancy may be altered so that the pregnancy can be maintained. To examine this interaction, we utilized a mouse model of Zika virus infection during pregnancy using intravaginal inoculation. We found that following Zika virus infection, pregnant mice exhibited increased expression of tolerant or non-inflammatory dendritic cells. Additionally, we found that pregnant mice have significantly depressed ability to secrete the cytokine IL-12 from innate immune cells in the uterus and the spleen while maintaining MHCII expression. These findings show that pregnancy-induced changes in the innate immune cells are biased towards tolerance and can result in decreased antigen-dependent stimulation of immune responses.


Circulation ◽  
2019 ◽  
Vol 140 (25) ◽  
pp. 2089-2107 ◽  
Author(s):  
Elisa Martini ◽  
Paolo Kunderfranco ◽  
Clelia Peano ◽  
Pierluigi Carullo ◽  
Marco Cremonesi ◽  
...  

Background: Inflammation is a key component of cardiac disease, with macrophages and T lymphocytes mediating essential roles in the progression to heart failure. Nonetheless, little insight exists on other immune subsets involved in the cardiotoxic response. Methods: Here, we used single-cell RNA sequencing to map the cardiac immune composition in the standard murine nonischemic, pressure-overload heart failure model. By focusing our analysis on CD45 + cells, we obtained a higher resolution identification of the immune cell subsets in the heart, at early and late stages of disease and in controls. We then integrated our findings using multiparameter flow cytometry, immunohistochemistry, and tissue clarification immunofluorescence in mouse and human. Results: We found that most major immune cell subpopulations, including macrophages, B cells, T cells and regulatory T cells, dendritic cells, Natural Killer cells, neutrophils, and mast cells are present in both healthy and diseased hearts. Most cell subsets are found within the myocardium, whereas mast cells are found also in the epicardium. Upon induction of pressure overload, immune activation occurs across the entire range of immune cell types. Activation led to upregulation of key subset-specific molecules, such as oncostatin M in proinflammatory macrophages and PD-1 in regulatory T cells, that may help explain clinical findings such as the refractivity of patients with heart failure to anti–tumor necrosis factor therapy and cardiac toxicity during anti–PD-1 cancer immunotherapy, respectively. Conclusions: Despite the absence of infectious agents or an autoimmune trigger, induction of disease leads to immune activation that involves far more cell types than previously thought, including neutrophils, B cells, Natural Killer cells, and mast cells. This opens up the field of cardioimmunology to further investigation by using toolkits that have already been developed to study the aforementioned immune subsets. The subset-specific molecules that mediate their activation may thus become useful targets for the diagnostics or therapy of heart failure.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 291
Author(s):  
Erika R. Schwarz ◽  
Lilian J. Oliveira ◽  
Francesco Bonfante ◽  
Ruiyu Pu ◽  
Malgorzata A. Pozor ◽  
...  

Zika virus (ZIKV) is an arbovirus that causes birth defects, persistent male infection, and sexual transmission in humans. The purpose of this study was to continue the development of an ovine ZIKV infection model; thus, two experiments were undertaken. In the first experiment, we built on previous pregnant sheep experiments by developing a mid-gestation model of ZIKV infection. Four pregnant sheep were challenged with ZIKV at 57–64 days gestation; two animals served as controls. After 13–15 days (corresponding with 70–79 days of gestation), one control and two infected animals were euthanized; the remaining animals were euthanized at 20–22 days post-infection (corresponding with 77–86 days of gestation). In the second experiment, six sexually mature, intact, male sheep were challenged with ZIKV and two animals served as controls. Infected animals were serially euthanized on days 2–6 and day 9 post-infection with the goal of isolating ZIKV from the male reproductive tract. In the mid-gestation study, virus was detected in maternal placenta and spleen, and in fetal organs, including the brains, spleens/liver, and umbilicus of infected fetuses. Fetuses from infected animals had visibly misshapen heads and morphometrics revealed significantly smaller head sizes in infected fetuses when compared to controls. Placental pathology was evident in infected dams. In the male experiment, ZIKV was detected in the spleen, liver, testes/epididymides, and accessory sex glands of infected animals. Results from both experiments indicate that mid-gestation ewes can be infected with ZIKV with subsequent disruption of fetal development and that intact male sheep are susceptible to ZIKV infection and viral dissemination and replication occurs in highly vascular tissues (including those of the male reproductive tract).


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Elizabeth Camacho-Zavala ◽  
Clara Santacruz-Tinoco ◽  
Esteban Muñoz ◽  
Rommel Chacón-Salinas ◽  
Ma Isabel Salazar-Sanchez ◽  
...  

Background: Zika virus (ZIKV) infection during pregnancy usually shows only mild symptoms and is frequently subclinical. However, it can be vertically transmitted to the fetus, causing microcephaly and other congenital defects. During pregnancy, the immune environment modifications can alter the response to viruses in general and ZIKV in particular. Objective: To describe the role of pregnancy in the systemic pro- and anti-inflammatory response during symptomatic ZIKV infection. Materials and Methods: A multiplex assay was used to measure 25 cytokines, chemokines, and receptors in 110 serum samples from pregnant and nonpregnant women with and without ZIKV infection with and without symptoms. Samples were collected through an epidemiological surveillance system. Results: Samples from pregnant women with ZIKV infection showed a higher viral load but had similar profiles of inflammatory markers as compared with nonpregnant infected women, except for CXCL10 that was higher in infected pregnant women. Notably, the presence of ZIKV in pregnancy favored a regulatory profile by significantly increasing anti-inflammatory cytokines such as interleukin (IL)-10, receptors IL-1RA, and IL-2R, but only those pro-inflammatory cytokines such as IL-6, interferon (IFN)-α, IFN-γ and IL-17 that are essential for the antiviral response. Interestingly, there were no differences between symptomatic and weakly symptomatic ZIKV-infected groups. Conclusion: Our results revealed a systemic anti-inflammatory cytokine and chemokine profile that could participate in the control of the virus. The anti-inflammatory response in pregnant women infected with ZIKA was characterized by high CXCL10, a cytokine that has been correlated with congenital malformations.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9773
Author(s):  
Ying Zhao ◽  
Zhijun Xia ◽  
Te Lin ◽  
Yitong Yin

Objective Pelvic organ prolapse (POP) refers to the decline of pelvic organ position and dysfunction caused by weak pelvic floor support. The aim of the present study was to screen the hub genes and immune cell infiltration related to POP disease. Methods Microarray data of 34 POP tissues in the GSE12852 gene expression dataset were used as research objects. Weighted gene co-expression network analysis (WGCNA) was performed to elucidate the hub module and hub genes related to POP occurrence. Gene function annotation was performed using the DAVID tool. Differential analysis based on the GSE12852 dataset was carried out to explore the expression of the selected hub genes in POP and non-POP tissues, and RT-qPCR was used to validate the results. The differential immune cell infiltration between POP and non-POP tissues was investigated using the CIBERSORT algorithm. Results WGCNA revealed the module that possessed the highest correlation with POP occurrence. Functional annotation indicated that the genes in this module were mainly involved in immunity. ZNF331, THBS1, IFRD1, FLJ20533, CXCR4, GEM, SOD2, and SAT were identified as the hub genes. Differential analysis and RT-qPCR demonstrated that the selected hub genes were overexpressed in POP tissues as compared with non-POP tissues. The CIBERSORT algorithm was employed to evaluate the infiltration of 22 immune cell types in POP tissues and non-POP tissues. We found greater infiltration of activated mast cells and neutrophils in POP tissues than non-POP tissues, while the infiltration of resting mast cells was lower in POP tissues. Moreover, we investigated the relationship between the type of immune cell infiltration and hub genes by Pearson correlation analysis. The results indicate that activated mast cells and neutrophils had a positive correlation with the hub genes, while resting mast cells had a negative correlation with the hub genes. Conclusions Our research identified eight hub genes and the infiltration of three types of immune cells related to POP occurrence. These hub genes may participate in the pathogenesis of POP through the immune system, giving them a certain diagnostic and therapeutic value.


2020 ◽  
Author(s):  
Hans C. Leier ◽  
Jules B. Weinstein ◽  
Jennifer E. Kyle ◽  
Joon-Yong Lee ◽  
Lisa M. Bramer ◽  
...  

AbstractZika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we performed comprehensive lipidomics to create a lipid network map during ZIKV infection. We found that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein resulted in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocked ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection.


Sign in / Sign up

Export Citation Format

Share Document