scholarly journals Antimicrobial Effect of Zataria Essential Oil on the Skin Bacteria in Wistar Rats

2020 ◽  
Vol 10 (1) ◽  
pp. 56-67
Author(s):  
Soheila Faramarz Isfahanian ◽  
◽  
Maryam Sadrnia ◽  
Sima Nasri ◽  
Hamid Sobhanian ◽  
...  

Objective: Zataria is one of the native plants of Iran which is widely used for the treatment of diseases among Iranians. In this study, we investigated the antimicrobial effects of Zataria essential oil on the skin bacteria in rats. Methods: Bacterial strains were isolated from the skin of 6 wistar rats and the antimicrobial effects of Zataria essential oil were evaluated by disk diffusion and microbroth dilution methods. In-vivo tests were performed to evaluate the antimicrobial effect of the essential oil by microbial culture as well as allergy tests on the skin of experimental rats compared to controls. Results: Three bacterial strains were isolated from the skin of rats identified as Staphylococcus aureus, Corynebacterium and Staphylococcus epidermidis. Minimum Growth Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for the two strains of Staphylococcus aureus and Corynebacterium were obtained 0.39 and 0.78 mg/ml, while for Staphylococcus epidermidis, they were 0.195 and 0.39 mg/ml, respectively. In-vivo test results showed the antibacterial effect of the essential oil on the skin bacteria and no inflammatory effects were observed under the allergy test. Conclusion: Zataria essential oil has antimicrobial effects on the skin infections in lower concentrations. The use of this essential oil as an antiseptic and preservative in cosmetics is recommended instead of chemical preservatives that generally have skin side effects.

2011 ◽  
Vol 1 (3) ◽  
pp. 111-118 ◽  

Considering the large number of the multiresistant bacterial strains and the increasing need in new antimicrobial formulation, the aim of this study was to evaluate the antipathogenic effect of E. caryophyllata essential oil on collection and recently isolated clinical strains of P. aeruginosa and S. aureus. Experimental assays were carried out by in vitro and in vivo tests. Qualitative and quantitative assessment of the antimicrobial activity was followed by the analysis of the essential oil influence on enzymatic soluble virulence factors expression. The cytotoxic effect of the vegetal extract was quantified by using HeLa cells. Nanosystem embedded essential oil was used to establish the in vivo antipathogenic effect on mice. Qualitative screening results revealed an early microbicidal effect quantified by low minimum inhibitory concentration values. The in vivo study showed a stabiliziation of the essential oil biological activities when using nanosystem embedding, that could be used for the design of proper formulations for delivery systems with antimicrobial effect.


2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Chih Tsai ◽  
Sew-Fen Leu ◽  
Quan-Rong Huang ◽  
Lan-Chun Chou ◽  
Chun-Chih Huang

Three lactic acid bacterial strains,Lactobacillus plantarum, HK006, and HK109, andPediococcus pentosaceusPP31 exhibit probiotic potential as antiallergy agents, both in vitro and in vivo. However, the safety of these new strains requires evaluation when isolated from infant faeces or pickled cabbage. Multiple strains (HK006, HK109, and PP31) were subject to a bacterial reverse mutation assay and a short-term oral toxicity study. The powder product exhibited mutagenic potential inSalmonellaTyphimurium strains TA98 and TA1535 (with or without metabolic activation). In the short-term oral toxicity study, rats received a normal dosage of 390 mg/kg/d (approximately9×109 CFU/kg/d) or a high dosage of 1950 mg/kg/d (approximately4.5×1010 CFU/kg/d) for 28 d. No adverse effects were observed regarding the general condition, behaviour, growth, feed and water consumption, haematology, clinical chemistry indices, organ weights, or histopathologic analysis of the rats. These studies have demonstrated that the consumption of multiple bacterial strains is not associated with any signs of mutagenicity ofS.Typhimurium or toxicity in Wistar rats, even after consuming large quantities of bacteria.


2022 ◽  
Vol 23 (1) ◽  
pp. 524
Author(s):  
Sergey V. Kravchenko ◽  
Pavel A. Domnin ◽  
Sergei Y. Grishin ◽  
Alexander V. Panfilov ◽  
Viacheslav N. Azev ◽  
...  

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.


Author(s):  
R. Cabrera-Contreras ◽  
R. Morelos-Ramírez ◽  
J. P. Quiróz-Ríos ◽  
D. Muñoz-Quiróz

Essential oils (EOs) are commonly used in food industry, due that they possess antioxidative and antimicrobial properties. There are few essential oils that have been used in medicine, due to its potent antibacterial activity against intrahospital pathogens. OEO has experimentally shown potent antibacterial effect on nosocomial Gram-positive bacteria, therefore it can be very useful in hospital environments, where there are many bacterial pathogens, which are the etiological agents of nosocomial infections and most of them are resistant to several antibiotics. Objective: The aim of this study was to determine antimicrobial effect of OEO on most frequent bacterial intrahospital pathogens: MRSA, MRSE comparatively to selected ATCC bacterial reference strains. Methods: This experimental study investigates the antibacterial action of oregano (Origanum vulgare) essential oil (OvEO) on two human pathogens: Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) Here, we used OEO against one of the most prominent antibiotic-resistant bacterial strains: methicillin-resistant SA (MRSAmecA+ = Meticillin Resistant SA and mecA- = Meticillin Resistance SA ), methicillin-resistant SE (MRSEmecA+ = Meticillin Resistance Staphylococcus epidermidis mecA+) and reference strains: S. aureus ATCC 700699, S. epidermidis ATCC 359845 and E. coli ATCC 25922. Bactericidal effects of the OEO on these bacteria were mainly evaluated using undiluted and four serial dilutions in coconut oil (CCO) l: 1:10, 1:100, 1:200, 1:400. Results: OEO, undiluted and 4 serial dilutions showed potent antibacterial activity against all strains tested. In conclusion, this OEO could be used as an alternative in medicine. The ability of OEO to inhibit and kill clinical Multi-Drug-Resistant (MDR): MRSA and MRSE strains, highlights it´s potential for use in the management of drug-resistant MDR infections in hospitals wards.


2021 ◽  
Vol 24 (1) ◽  
pp. 84-97
Author(s):  
Zohreh Karimi Taheri ◽  
◽  
Mohammad Hosein Aarabi ◽  
Ali Nazari Alam ◽  
Majid Nejati ◽  
...  

Background and Aim: Despite the anti-cancer and antimicrobial properties of licorice extract and lavender essential oil, some factors, such as low bioavailability and biodegradable, limit their therapeutic use. Using nanoparticles is a method to overcome these restrictions. This study aimed to investigate the anti-proliferative effects of nanoemulsion containing licorice extract and lavender essential oil on cancer cells; we also evaluated its antimicrobial properties in vitro. Methods & Materials: In this experimental study, nanoemulsions, containing licorice extract and lavender essential oil were developed by the spontaneous emulsion method. The anti-proliferative effect of nanoemulsion was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric method on two cell lines HepG2 and SK-MEL-3. To measure the antimicrobial effect of 4 standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Minimum Inhibitory Concentration (MIC) method was used. Ethical Considerations: This study was approved by the Ethics Committee of Kashan University of Medical Sciences (Code: IR.KAUMS.MEDNT.REC.1396.106). Results: The results of MTT test on HepG2 cells indicated that the concentrations of 630, 1250, and 2500 μg/mL nanoemulsions caused toxicity to the cell and led to the death of >50% of the cells (IC50=401μg/mL; P<0.05). Evaluating SK-MEL3 cells revealed that except for 75 μg of nanoemulsion, other concentrations induced death in >50% of the cells (IC50 = 82 μg/mL; P<0.05). In addition, nanoemulsions, with antimicrobial properties, were studied in 4 strains of bacteria; the highest antimicrobial properties were observed in Staphylococcus epidermidis. Conclusion: Nanoemulsion containing licorice extract and lavender essential oil presents antimicrobial and antiproliferative effects on the two cell lines studied. The current study results indicated that the nano emulsification of lavender essential oil and licorice extract can enhance their biological impact; thus, they can be used as a drug formulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Shokhan H. Azeez ◽  
Shanaz M. Gaphor

Objective. This study investigates the antibacterial effect of essential oil extracted from the gum ofPistacia atlantica KurdicaagainstPorphyromonas gingivalisand histological evaluation of an experimental gel of the extract in wound healing in the back subcutaneous tissue of Wistar rats.Methods. Clinical strains of bacteria obtained from subgingival plaque samples of individuals having periodontitis, isolation, and confirmation were done by conventional microbiological tests and molecular technique. Essential oil was extracted by using hydrodistillation method; antibacterial activity has been determined by two fold serial dilution method. Histological evaluation conducted on fifteen Wistar rats. Incisions were made on the dorsal surface of each animal for implanting of 3 polysilicone tubes (empty, tetracycline gel, and the experimental gel). After 1, 4, and 8 weeks, the animals were euthanized and the specimens were prepared histologically.Result. The extract demonstrated antimicrobial effect and significant wound healing in the different study durations particularly our product showed progression in epidermal wound healing and decrease in cellularity and scoring of inflammatory cells.Conclusion. The extract was able to pose inhibitory and bactericidal activity againstP. gingivalisand the experimental gel was able to have a good wound healing that enable it to be considered as a compatible material.


Author(s):  
Flávia A. Gonçalves ◽  
Manoel Andrade Neto ◽  
José N. S. Bezerra ◽  
Andrew Macrae ◽  
Oscarina Viana de Sousa ◽  
...  

Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.


Sign in / Sign up

Export Citation Format

Share Document