scholarly journals PRINCIPLES OF CONSTRUCTION OF THE GENERALIZED MATHEMATICAL MODEL OF THE HYDRAULIC EXTINGUISHER OF OSCILLATIONS OF THE PASSENGER CAR

Author(s):  
I. Shcherbyna

The study of the processes associated with the use of working fluids in the elements of hydraulic drives was preceded by studies of the unsteady periodic movement of the working fluid in the pipelines of hydraulic systems. Such processes take place in hydraulic drives and their elements, and are associated with the compressibility of the working fluid. The stability of the operation of hydraulic valves, which are supplied to hydraulic systems in order to maintain, within the required limits, pressures or flow rates, is also largely predetermined by non-stationary hydro mechanical processes occurring in the pipelines of these systems, channels and chambers of hydraulic devices. The peculiarities of the working processes of passive vibration dampers of passenger cars include the interaction of the working fluid with moving parts and its flow through the channels and through the calibrated holes with local artificial resistance. For in-depth analysis of changes in operating parameters, it is necessary to use a mathematical model that should reflect the processes that occur during the operation of the hydraulic device. In the presented article the generalized mathematical model of the hydraulic damper of fluctuations of the passenger car of the НЦ-1100 type is developed. This model takes into account the special operating conditions of the hydraulic shock absorber, which allows you to study the impact of operating parameters on the performance of the device.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chinedu I. Ossai

The flow of crude oil, water, and gas from the reservoirs through the wellheads results in its deterioration. This deterioration which is due to the impact of turbulence, corrosion, and erosion significantly reduces the integrity of the wellheads. Effectively managing the wellheads, therefore, requires the knowledge of the extent to which these factors contribute to its degradation. In this paper, the contribution of some operating parameters (temperature, CO2 partial pressure, flow rate, and pH) on the corrosion rate of oil and gas wellheads was studied. Field data from onshore oil and gas fields were analysed with multiple linear regression model to determine the dependency of the corrosion rate on the operating parameters. ANOVA, value test, and multiple regression coefficients were used in the statistical analysis of the results, while in previous experimental results, de Waard-Milliams models and de Waard-Lotz model were used to validate the modelled wellhead corrosion rates. The study shows that the operating parameters contribute to about 26% of the wellhead corrosion rate. The predicted corrosion models also showed a good agreement with the field data and the de Waard-Lotz models but mixed results with the experimental results and the de Waard-Milliams models.


Author(s):  
Duc Quang Nguyen ◽  
Sabah Mounir ◽  
Karim Allaf

AbstractThe powder mixture of gum arabic and maltodextrin was produced by spray drying. The inlet air temperature of spray dryer was varied from 160 °C to 260 °C and the maltodextrin content was varied from 0 to 50 % in the feed solution with the concentration of 42.5 % (w/v) total solids by weight. The properties of the finished product were characterized to examine the impact of changes in these operating parameters. The results showed that: the inlet air temperature had a stronger influence on the properties of finished product than the MD/GA ratio, whereas the feed rate was more clearly affected by the MD/GA ratio. Two optimal parameters obtained include MD/GA ratio equal to 0.615 and the inlet air temperature of spray dryer Te = 258 °C.


2017 ◽  
Author(s):  
Hector Gomez ◽  
Usama Tohid ◽  
Arturo Pacheco-Vega

In this study, numerical simulations were performed to find the current-voltage distribution for a laminar flow-based membraneless fuel cell (LFFC). The system uses formic acid and oxygen as the fuel and oxidant, respectively, and has a Y-shaped geometry with two separate inlets that merge into a single channel. The main objective of this work is to analyze the impact of geometry and operating conditions on the performance of these devices. This is done by proposing a novel wavy-channel-based geometry for the side walls, along with planar top and bottom walls, and comparing the behavior of the corresponding system to that of LFFCs based on straight-channel walls. Special attention is placed on the effect of both the amplitude of the sinusoid and its wavelength on the performance of the device. The effect of flow rates — in the range of [200, 350] μL/min — is also studied. The mathematical model is formulated by considering the Navier-Stokes equations along with Butler-Volmer and Fick’s law. For each fuel-cell configuration, the governing equations are discretized and solved using finite elements, and the solutions given in terms of the polarization curves. The model was first verified using published numerical data for a straight-channel-based LFFC. The simulations show that the performance achieved by the device, based on the proposed wavy channel geometry, is slightly better than that of the LFFC with straight channel walls. On the other hand, higher flowrates significantly improve the power density of the device. Although the current mathematical model may be useful in a variety of applications, improvements on it are currently underway to account for the effects of potential distributions on ions within the flow channel, and results from it will be reported in the future.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4045
Author(s):  
Van Vu Nguyen ◽  
Szabolcs Varga ◽  
Vaclav Dvorak

The paper presented a mathematical assessment of selected refrigerants for the ejector cooling purpose. R1234ze(e) and R1234yf are the well-known refrigerants of hydrofluoroolefins (HFOs), the fourth-generation halocarbon refrigerants. Nature working fluids, R600a and R290, and third-generation refrigerant of halocarbon (hydrofluorocarbon, HFC), R32 and R152a, were selected in the assessment. A detail mathematical model of the ejector, as well as other components of the cycle, was built. The results showed that the coefficient of performance (COP) of R1234ze(e) was significantly higher than R600a at the same operating conditions. R1234yf’s performance was compatible with R290, and both were about 5% less than the previous two. The results also indicated that R152a offered the best performance among the selected refrigerants, but due to the high value of global warming potential, it did not fulfill the requirements of the current European refrigerant regulations. On the other hand, R1234ze(e) was the most suitable working fluid for the ejector cooling technology, thanks to its overall performance.


Author(s):  
M. Raben ◽  
J. Friedrichs ◽  
J. Flegler ◽  
T. Helmis

During the last decades a large effort has been made to continuously improve turbomachine efficiency. Besides the optimization of the primary flow path, also the secondary flow losses have been reduced considerably, due to the use of more efficient seals. Brush seals, as a compliant contacting filament seal, have become an attractive alternative to conventional labyrinth seals in the field of aircraft engines as well as in stationary gas and steam turbines. The aim of today’s research related to brush seals is to understand the characteristics and their connections, in order to be able to make performance predictions, and to ensure the reliability over a defined operating period. It is known that inevitable frictional contacts lead to an abrasive wear on the rotor side as well as on the bristle side. The wear situation is essentially influenced by the resulting contact force at the seal-to-rotor interface during the operating time. This contact force depends on the seal’s blow down capability, which is mainly determined by the geometrical design of the bristle pack, e.g. the axial inclination of the investigated seal design, in combination with the design and material of the surrounding parts, as well as the thermal boundary conditions. For realistic investigations with representative circumferential velocities the TU Braunschweig operates a specially developed steam test rig which enables live steam investigations under varying operating conditions up to 50 bar and 450 °C. Wear measurements and the determination of seal performance characteristics, such as blow down and bristle stiffness, were enabled by an additional test facility using pressurized cold air up to 8 bar as working fluid. This paper presents the chronological wear development on both rotor and seal side, in a steam test lasting 25 days respectively 11 days. Interruptions after stationary and transient intervals were made in order to investigate the wear situation. Two different seal arrangements, a single tandem seal and a two-stage single seal arrangement, using different seal elements were considered. The results clearly show a continuous wear development and that the abrasive wear of the brush seal and rotor is mainly due to the transient test operation, particularly by enforced contacts during shaft excursions. Despite the increasing wear to the brushes, all seals have shown a functioning radial-adaptive behavior over the whole test duration with a sustained seal performance. Thereby, it could be shown that the two-stage arrangement displays a load shift during transients, leading to a balanced loading and unloading status for the two single brush seals. From load sharing and in comparison with the wear data of the tandem seal arrangement, it can be derived that the two-stage seal is less prone to wear. However, the tandem seal arrangement, bearing the higher pressure difference within one configuration, shows a superior sealing performance under constant load, i.e. under stationary conditions.


2011 ◽  
Vol 462-463 ◽  
pp. 888-893
Author(s):  
Gao Ping Wang ◽  
Pan Zhou ◽  
Han Xin Chen ◽  
Jun Chen

All over the world at present, injuries and fatalities from road accidents are a significant problem, especially occurred to pedestrians from passenger cars. Most of the fatal accidents between car and pedestrians prove deadly because of the head to hood impact. This paper aims to develop a bumper to avoid from passenger car’s fatal head impact for pedestrian protection, and most importantly, the impact of different objects with passenger car bumper needs to be recognized. Firstly, a pendulum system is constructed to perform the fundamental research which is concentrated on the response pattern of impact-object simulation tests, and we confirmed the application possibility for the method of discriminable pattern recognition whether impact-object is human-like or not by means of neural networks using smart PZT materials. Finally, the impact characteristics analyses can provide enough pattern recognition indices which can be developed and then used to recognize the impact information by two different neural networks.


Author(s):  
Brian Janke ◽  
Thomas Kuehn

Thermodynamic analysis has been conducted for geothermal power cycles using a portion of deep ground sequestered CO2 as the working fluid. This allows energy production from much shallower depths and in geologic areas with much lower temperature gradients than those of current geothermal systems. Two different system designs were analyzed for power production with varying reservoir parameters, including reservoir depth, temperature, and CO2 mass flow rate. The first design is a direct single-loop system with the CO2 run directly through the turbine. This system was found to provide higher system efficiency and power production, however design complications such as the need for high pressure turbines, two-phase flow through the turbine and the potential for water-CO2 brine mixtures, could require the use of numerous custom components, driving up the cost. The second design is a binary system using CO2 as the heat transfer fluid to supply thermal energy to an Organic Rankine Cycle (ORC). While this system was found to have slightly less power production and efficiency than the direct system, it significantly reduces the impact of design complications associated with the direct system. This in turn reduces the necessity for certain custom components, thereby reducing system cost. While performance of these two systems is largely dependent on location and operating conditions, the binary system is likely applicable to a larger number of sites and will be more cost effective when used in combination with current off-the-shelf ORC power plants.


2021 ◽  
Vol 11 (1) ◽  
pp. 425-434
Author(s):  
Jacek Pielecha ◽  
Kinga Skobiej ◽  
Karolina Kurtyka

Abstract In order to better reflect the actual ecological performance of vehicles in traffic conditions, both the emission standards and the applied emission tests are being developed, for example by considering exhaust emissions for a cold engine start. This article presents the research results on the impact of ambient temperature during the cold start of a gasoline engine in road emission tests. The Real Driving Emissions (RDE) tests apply to passenger cars that meet the Euro 6 emissions norm and they are complementary to their type approval tests. A portable emissions measurement system was used to record the engine and vehicle operating parameters, as well as to measure the exhaust emissions during tests. This allowed for parameters such as engine load, engine speed and vehicle speed to be monitored. The cold start conditions for two different temperatures (8°C and 25°C) were compared in detail. Moreover, the engine operating parameters, exhaust concentration values and road emissions for the 300 s time interval, were compared. The summary of the article presents the share of a passenger car’s cold start phase for each exhaust compound in the urban part of the test and in the entire Real Driving Emissions test depending on the ambient temperature.


Author(s):  
K. A. Trukhanov

Describes and provides a brief description of the modern application of hydraulic “long” lines in a subsea production facility. The necessity and relevance of developing a mathematical model that allows us to predict and carry out practical calculations of ongoing processes in hydraulic “long” lines, spending the minimum amount of time and resources on this, is shown. In the article are provided general provisions and basic mathematical relationships for performing calculations and modeling unsteady processes in hydraulic lines with distributed parameters. Boundary conditions are given that make it possible to obtain a closed system of equations representing a mathematical model of hydraulic “long” lines. The scientific novelty of the results presented in the article is that the main criteria necessary for the design and operation of equipment containing hydraulic “long” lines were obtained and presented. Among which it is especially necessary to note, dependences for the unsteady coefficient of hydraulic friction resistance of the pipe λ. Criteria are also given for determining the amplitude of signal attenuation in the case of using a hydraulic “long” line as a line for transmitting information, as well as a criterion that allows to determine the minimum pump flow rate to ensure a given level of purity of the working fluid during operation and maintenance of equipment with hydraulic “long” lines, which It is especially important and relevant in practice for the selection of equipment and determine the minimum required power. The content of the article is interest to specialists involved in the development of hydraulic systems with hydraulic “long” lines.


Transport ◽  
2008 ◽  
Vol 23 (3) ◽  
pp. 236-239 ◽  
Author(s):  
Stasys Dailydka ◽  
Leonas Povilas Lingaitis ◽  
Sergey Myamlin ◽  
Vladimir Prichodko

The article presents a mathematical model for assessing the real operating conditions of railway rolling stock, taking into account the situations when the wheel loses contact with rail. The obtained amplitudinal fluctuation characteristics depend on the set roughness function and the running speed of the wheel. When calculating dynamic processes, the contact between wheel and rail should be considered unstable. With the increase of speed, the impact of this instability increases.


Sign in / Sign up

Export Citation Format

Share Document