ER stress and autophagy induced by SARS-CoV-2: The targets for melatonin treatment

2020 ◽  
Vol 3 (3) ◽  
pp. 346-361 ◽  
Author(s):  
Jose Antonio Boga ◽  
Ana Coto-Montes

Coronavirus disease 19 (COVID-19) is a viral disease caused by the new coronavirus SARS-CoV-2. Like other coronaviral infections, SARS-CoV-2 causes oxidative and ER stress triggering cellular response pathways, mainly PERK and IRE1 branches of the UPR. This excessive oxidative stress and the increasing of unfolded and misfolded proteins induce autophagy. Once this process is triggered, the blockage of the fusion of autophagosomes and lysosomes induced by virus leads to an incomplete autophagy. Double-membraned vesicles, which create a membranous support for viral RNA replication complexes, are formed. Melatonin is a pleiotropic molecule, which reduces oxidative and ER stress, regulates immune system, and modulates autophagy pathway. Thus, melatonin reinforces UPR and unlocks autophagy blockage, allowing autophagosomes to bind to lysosomes, completing the process of autophagy and decreasing viral replication capacity. Based on these activities of melatonin the recommendation of melatonin for patients with COVID-19 should be seriously considered, especially in elderlies and patients with different comorbidities, which are the highest risk population for serious cases. 

2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4210
Author(s):  
Yan Zhou ◽  
Chunxiu Zhou ◽  
Xutao Zhang ◽  
Chi Teng Vong ◽  
Yitao Wang ◽  
...  

Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.


2003 ◽  
Vol 312 (4) ◽  
pp. 1342-1348 ◽  
Author(s):  
Takanori Yokota ◽  
Kanako Sugawara ◽  
Kaoru Ito ◽  
Ryosuke Takahashi ◽  
Hiroyoshi Ariga ◽  
...  

Author(s):  
Sinan Xiong ◽  
Wee-Joo Chng ◽  
Jianbiao Zhou

AbstractUnder physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.


2021 ◽  
Vol 169 ◽  
pp. 47-55
Author(s):  
Xinyan Zhang ◽  
Tong Yu ◽  
Xinyan Guo ◽  
Ruixue Zhang ◽  
Yanni Jia ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 693
Author(s):  
Corina Daniela Ene ◽  
Simona Roxana Georgescu ◽  
Mircea Tampa ◽  
Clara Matei ◽  
Cristina Iulia Mitran ◽  
...  

The interaction of reactive oxygen species (ROS) with lipids, proteins, nucleic acids and hydrocarbonates promotes acute and chronic tissue damage, mediates immunomodulation and triggers autoimmunity in systemic lupus erythematous (SLE) patients. The aim of the study was to determine the pathophysiological mechanisms of the oxidative stress-related damage and molecular mechanisms to counteract oxidative stimuli in lupus nephritis. Our study included 38 SLE patients with lupus nephritis (LN group), 44 SLE patients without renal impairment (non-LN group) and 40 healthy volunteers as control group. In the present paper, we evaluated serum lipid peroxidation, DNA oxidation, oxidized proteins, carbohydrate oxidation, and endogenous protective systems. We detected defective DNA repair mechanisms via 8-oxoguanine-DNA-glycosylase (OGG1), the reduced regulatory effect of soluble receptor for advanced glycation end products (sRAGE) in the activation of AGE-RAGE axis, low levels of thiols, disulphide bonds formation and high nitrotyrosination in lupus nephritis. All these data help us to identify more molecular mechanisms to counteract oxidative stress in LN that could permit a more precise assessment of disease prognosis, as well as developing new therapeutic targets.


Author(s):  
Kazuki Kojima ◽  
Hidenori Ichijo ◽  
Isao Naguro

Summary VCells are constantly exposed to various types of stress, and disruption of the proper response lead to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum (ER) stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focusing on upstream stimuli that regulate ASK family members.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Basma Basha ◽  
Samson Mathews Samuel ◽  
Chris R. Triggle ◽  
Hong Ding

The vascular complications of diabetes mellitus impose a huge burden on the management of this disease. The higher incidence of cardiovascular complications and the unfavorable prognosis among diabetic individuals who develop such complications have been correlated to the hyperglycemia-induced oxidative stress and associated endothelial dysfunction. Although antioxidants may be considered as effective therapeutic agents to relieve oxidative stress and protect the endothelium, recent clinical trials involving these agents have shown limited therapeutic efficacy in this regard. In the recent past experimental evidence suggest that endoplasmic reticulum (ER) stress in the endothelial cells might be an important contributor to diabetes-related vascular complications. The current paper contemplates the possibility of the involvement of ER stress in endothelial dysfunction and diabetes-associated vascular complications.


Sign in / Sign up

Export Citation Format

Share Document