scholarly journals Sorption of Pharmaceuticals in Aqueous Solution Using Insoluble β-Cyclodextrin Polymers

Author(s):  
Atefeh S Mirani

The present study was aimed at evaluating the ability of insoluble β-cyclodextrin polymers (βCDps) to recover pharmaceuticals from aqueous solutions. Two different β-cyclodextrin polymers, one composed of epichlorohydrin-cross linked β-cyclodextrin and the other a β-cyclodextrin-polyurethane, were prepared by condensation polymerization and addition polymerization of βCD using epichlorohydrin (EP) and diisocyanatohexane (HDI) as cross linking agents, respectively. The contaminants tested were naphthalene, naproxen, nabumetone, 2-naphthol, pyrene and propranolol which represent model pharmaceutical molecules. The adsorption isotherms of the organics and βCDPs were well described by Freundlich isotherm equations. The trapping efficiencies were determined using fluorescence spectroscopy as the analytical technique. Based on the results of this study, it was found that the epichlorohydrin-cross linked β-cyclodextrin polymers were more efficient in adsorption of organic contaminants both in batch and column systems when compared with β-cyclodextrin-polyurethane polymers. Reasons for these differences are discussed.

2021 ◽  
Author(s):  
Atefeh S Mirani

The present study was aimed at evaluating the ability of insoluble β-cyclodextrin polymers (βCDps) to recover pharmaceuticals from aqueous solutions. Two different β-cyclodextrin polymers, one composed of epichlorohydrin-cross linked β-cyclodextrin and the other a β-cyclodextrin-polyurethane, were prepared by condensation polymerization and addition polymerization of βCD using epichlorohydrin (EP) and diisocyanatohexane (HDI) as cross linking agents, respectively. The contaminants tested were naphthalene, naproxen, nabumetone, 2-naphthol, pyrene and propranolol which represent model pharmaceutical molecules. The adsorption isotherms of the organics and βCDPs were well described by Freundlich isotherm equations. The trapping efficiencies were determined using fluorescence spectroscopy as the analytical technique. Based on the results of this study, it was found that the epichlorohydrin-cross linked β-cyclodextrin polymers were more efficient in adsorption of organic contaminants both in batch and column systems when compared with β-cyclodextrin-polyurethane polymers. Reasons for these differences are discussed.


2015 ◽  
Vol 15 (5) ◽  
pp. 981-989 ◽  
Author(s):  
Agostina Chiavola ◽  
Emilio D'Amato ◽  
Renato Gavasci ◽  
Piero Sirini

Among the different technologies for reducing arsenic concentration in drinking water, adsorption has demonstrated in many cases to be superior in terms of performance and costs. However, there are numerous types of commercial adsorbents potentially capable of treating arsenic-contaminated groundwater. The present paper compares arsenic uptake efficiency of two different commercial media, one (FerriXTM) using mainly the adsorption process, and the other (IRA 400) working as an ion-exchange resin. Firstly, batch studies with artificially contaminated solutions were run to determine the isotherm equations and the theoretical uptake capacity. The following values of the equilibrium coefficients were determined: for IRA 400, using a two-site model K = 1.749; for FerriXTM, using the Freundlich isotherm model n50 = 3.02 mg L/g and k50 = 12.07 mg L/g, and n100 = 2.32 mg L/g and k100 = 6.75 mg L/g, for 50 mg L/g and 100 mg/L initial arsenic concentrations, respectively. Then, a series of experiments were carried out on column plants using real contaminated feeding solutions to determine the breakthrough curves. Both media showed very high duration of the cycle run. However, performance of IRA 400 was negatively affected by the presence of interfering ions, such as sulfates, which accelerated the achievement of the breakthrough condition. Instead, FerriXTM removed arsenic for a much higher number of bed volumes than IRA 400, but it was ineffective against the other contaminants of the solution.


2013 ◽  
Vol 683 ◽  
pp. 339-342
Author(s):  
Bing Li ◽  
Yong Chun Dong

The grafted polytetrafluoroethylene (PTFE) fibers were prepared with acrylic acid and then coordinated with Fe (III) ions. The effect of initial Fe (III) ion concentration and temperature on coordination process was investigated. In addition, the kinetics of the coordination process was also evaluated. The results indicated that increasing initial Fe (III) concentration and temperature significantly improve the amount of Fe (III) ions coordinated onto the fiber. The coordination between them can be described by Langmuir and Freundlich isotherm equations. On the other hand, coordinating process also follows a pseudo-second order model. Moreover, a higher initial Fe (III) ion concentration gives rise to an enhanced initial Fe (III) ion coordination rate.


2018 ◽  
Vol 16 (1) ◽  
pp. 842-852 ◽  
Author(s):  
Tian Ai ◽  
Xiaojun Jiang ◽  
Qingyu Liu

AbstractIn this paper, a new surface modification method was reported for the preparation of Phyllostachys pubescens powder as an effective adsorbent for the removal of chromium. Complex copper sulfide (Cu-S)nanospheres were evenly dispersed and loaded into the internal surface of the adsorbent, which provided both the ion exchange and oxidative-reductive properties. The composite showed an excellent adsorption efficacy for Cr(III) and Cr(VI). The surface properties of the obtained materials were characterized by FTIR and SEM. Maximum adsorption for Cr(III) and Cr(VI) was observed at pH 6.1 and 1.9, respectively. The experimental sorption equilibrium data were modeled using Langmuir and Freundlich isotherm equations. It was found that the maximum adsorption capacities of Cr(III) and Cr(VI) were 52.30 mg g-1 and 94.25 mg g-1, respectively. The adsorption mechanism analysis inferred that the major adsorption mode of Cr(III) was ion exchange, and Cr(VI) was oxide-reduction.


Konversi ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Ari Susandy Sanjaya ◽  
Rizcy Paramita Agustine

Abstrak- Logam Pb merupakan salah satu pencemar lingkungan dan dapat mengakibatkan kematian atau gangguan kesehatan dalam waktu singkat. Salah satu cara untuk mengatasi masalah pencemaran Pb adalah dengan menggunakan arang aktif dari kulit pisang. Penelitian ini bertujuan untuk menentukan model kinetika yang sesuai pada proses adsorpsi Pb dengan melihat daya jerap arang aktif kulit pisang dalam berbagai variasi massa (1 g; 1,5g dan 2 g) dan waktu kontak (20 menit, 40 menit dan 60 menit). Analisa Kinetika didasarkan pada kinetika orde nol, orde satu dan orde dua serta menentukan kapasitas maksimum adsorpsi arang atif kulit pisang  terhadap logam Pb. Persamaan yang digunakan dalam proses adsorpsi adalah persamaan adsorpsi Isoterm Langmuir dan Freundlich. Dari hasil analisa, waktu optimum adsorbsi terjadi pada waktu 60 menit.  Kinetika adsorbsi logam Pb dengan arang aktif dari kulit pisang pada massa 1 dan 2 g mengikuti model kinetika orde 2, sedangkan pada massa 1,5 g mengikuti kinetika orde 0. Persamaan adsorpsi Langmuir lebih sesuai untuk isotherm adsorpsi pada penelitian ini. Adsorpsi Pb oleh kulit pisang yang sesuai dengan pola isotherm adsorpsi Langmuir mengindikasikan bahwa adsorpsi hanya berlangsung satu lapis (monolayer). Kapasitas adsorpsi maksimum ditunjukkan oleh nilai a yang besar, yaitu 1,4582 pada massa 1 g sedangkan kekuatan interaksi antara ion Pb2+ dengan kulit pisang terjadi pada massa 2 g yang ditunjukkan dengan nilai kL yang besarnya 0,409 Kata kunci : kinetika adsorpsi, arang aktif, kulit pisang, logam Pb  Abstract- Lead metal is one of environment polluter and can cause decease or health problems in sort time. The way to solve this problem is with used the carbon active from banana peel. This research is intend to find the kinetics model that appropriate in Pb adsorption process by knowing absorption of banana peel carbon active within mass variations (1; 1,5 and 2 g) and contact time (20, 40, and 60 minutes). Kinetics analysis are based from orde zero,one, and two and find the maximum capacity of adsorption from banana peel carbon active to lead metal. Equation which using at the adsorption process are Langmuir and Freundlich isotherm equations. From the analysis results, optimum time is at 60 minutes.kinetics of Pb absorption with carbon active from banana peel in mass 1 and 2 gr following kinetics model orde 2, then in mass 1,5 g following kinetics model orde 0. Langmuir equation is more appropriate in this research. Pb absorption from the banana peel that appropriate to Langmuir isotherm system is indicates adsorption was occur in one layer (monolayer). Maximum adsorption capacity is showing by the bigger value from a, that is 1,4582 in mass 1 g then interaction power of Pb with the banana peel was occur in mass 2 gr which showing with the value of kL is 0,4090.  Keywords : adsorption kinetics, carbon active, banana peel, Pb metal


2001 ◽  
Vol 114 (15) ◽  
pp. 2819-2829 ◽  
Author(s):  
Davide Andrenacci ◽  
Filippo M. Cernilogar ◽  
Carlo Taddei ◽  
Deborah Rotoli ◽  
Valeria Cavaliere ◽  
...  

A study was made of the localization and assembly of the VM32E protein, a putative vitelline membrane component of the Drosophila eggshell. The results highlight some unique features of this protein compared with the other proteins of the same gene family. At the time of its synthesis (stage 10), the VM32E protein is not detectable in polar follicle cells. However, it is able to move in the extracellular space around the oocyte and, by stage 11 is uniformly distributed in the vitelline membrane. During the terminal stages of oogenesis the VM32E protein is partially released from the vitelline membrane and becomes localized in the endochorion layer also. By analyzing transgenic flies carrying variously truncated VM32E proteins, we could identify the protein domains required for the proper assembly of the VM32E protein in the eggshell. The highly conserved vitelline membrane domain is implicated in the early interactions with other components and is required for cross-linking VM32E protein in the vitelline membrane. The terminal carboxylic domain is necessary for localization to the endochorion layer. Protein with the C-end domain deleted is localized solely to the vitelline membrane and cross-linked only in laid eggs, as occurs for the other vitelline membrane proteins.


2004 ◽  
Vol 50 (5) ◽  
pp. 321-328 ◽  
Author(s):  
S. Echigo ◽  
S. Itoh ◽  
T. Natsui ◽  
T. Araki ◽  
R. Ando

The activity inducing chromosomal aberrations of the mixture of brominated disinfection by-products (DBPs) was approximately three times higher than that of the chlorinated counterparts for the same hypohalous acid dose. With the combination of chromosomal aberration test and a new analytical technique to differentiate total organic chlorine (TOCl) and total organic bromine (TOBr), it was found that TOBr was correlated to the mutagenicity of chlorinated waters. It was also implied that for a bromide-to-TOC ratio of 0.1 (mg/mg C), brominated DBPs could account for at least 29% of the total toxicity of DBPs formed during chlorination. On the other hand, bromate ion, a major ozonation DBP, was not a major contributor to the activity inducing chromosomal aberrations of the water treated with an ozone/chlorine sequential process. Therefore, ozonation is one possible option to reduce the health risk caused by DBPs even in the presence of bromide.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 111 ◽  
Author(s):  
Jin-Oh Jeong ◽  
Jong-Seok Park ◽  
Young-Ah Kim ◽  
Su-Jin Yang ◽  
Sung-In Jeong ◽  
...  

Conducting polymer (CP)-based hydrogels exhibit the behaviors of bending or contraction/relaxation due to electrical stimulation. They are similar in some ways to biological organs and have advantages regarding manipulation and miniaturization. Thus, these hydrogels have attracted considerable interest for biomedical applications. In this study, we prepared PPy/PVP hydrogel with different concentrations and content through polymerization and cross-linking induced by gamma-ray irradiation at 25 kGy to optimize the mechanical properties of the resulting PPy/PVP hydrogel. Optimization of the PPy/PVP hydrogel was confirmed by characterization using scanning electron microscopy, gel fraction, swelling ratio, and Fourier transform infrared spectroscopy. In addition, we assessed live-cell viability using live/dead assay and CCK-8 assay, and found good cell viability regardless of the concentration and content of Py/pTS. The conductivity of PPy/PVP hydrogel was at least 13 mS/cm. The mechanical properties of PPy/PVP hydrogel are important factors in their application for biomaterials. It was found that 0.15PPy/PVP20 (51.96 ± 6.12 kPa) exhibited better compressive strength than the other samples for use in CP-based hydrogels. Therefore, it was concluded that gamma rays can be used to optimize PPy/PVP hydrogel and that biomedical applications of CP-based hydrogels will be possible.


1987 ◽  
Vol 116 (1_Suppl) ◽  
pp. S166-S172 ◽  
Author(s):  
John Chan ◽  
Pilar Santisteban ◽  
Michele De Luca ◽  
Osamu Isozaki ◽  
Evelyn Grollman ◽  
...  

Abstract. When solubilized, radiolabelled membrane preparations from FRTL-5 rat thyroid cells are applied to TSH affinity columns, two separate peaks of protein can be eluted by high salts/high pH and low pH buffers, respectively. Immunoprecipitation with monoclonal antibodies to the TSH receptor shows that both peaks contain proteins related to the TSH receptor. If extracts were from cells grown without TSH, one peak has a ~ 300 K and the other a ~ 70 K protein the 70 K protein can be derived from the purified 300 K protein in vitro. A 50 and 20 K protein can be derived from the 70 K protein. If extracts are from cells grown with TSH, the peaks contain a multiplicity of additional immunoprecipitable bands of ~ 200, 175, 130, 90, 50, 20 K etc. These bands are shown to result from the ability of TSH to increase the synthesis (3–4-fold) and degradation (2–3-fold) of the 300 and 70 K proteins. The 300/70 K protein fractions are reactive with monoclonal autoimmune thyroid stimulating antibodies and contain a specific disialo ganglioside. The ganglioside migrates near GM2, i.e., like a lower order ganglioside, and contains fucose. In translation experiments, the monoclonal antibodies to the TSH receptor identify a single mRNA component which produces a protein of ~ 220 K. This protein is not present in thyroid cells which have no functional TSH receptor and which cannot be surface labelled with monoclonal antibodies to the TSH receptor. The data thus indicate that the multiplicity of TSH binding proteins demonstrated in many labs may be breakdown products of a receptor which is synthesized by a single message but has both 330 and 70 K forms and is tightly complexed with a specific thyroid ganglioside. The 70 K form is composed of ~ 50 and ~ 20 K fragments seen in TSH cross-linking studies.


2021 ◽  
Vol 118 (42) ◽  
pp. e2107249118
Author(s):  
Somanath Kallolimath ◽  
Lin Sun ◽  
Roman Palt ◽  
Karin Stiasny ◽  
Patrick Mayrhofer ◽  
...  

Monoclonal antibodies (mAbs) that efficiently neutralize SARS-CoV-2 have been developed at an unprecedented speed. Notwithstanding, there is a vague understanding of the various Ab functions induced beyond antigen binding by the heavy-chain constant domain. To explore the diverse roles of Abs in SARS-CoV-2 immunity, we expressed a SARS-CoV-2 spike protein (SP) binding mAb (H4) in the four IgG subclasses present in human serum (IgG1-4) using glyco-engineered Nicotiana benthamiana plants. All four subclasses, carrying the identical antigen-binding site, were fully assembled in planta and exhibited a largely homogeneous xylose- and fucose-free glycosylation profile. The Ab variants ligated to the SP with an up to fivefold increased binding activity of IgG3. Furthermore, all H4 subtypes were able to neutralize SARS-CoV-2. However, H4-IgG3 exhibited an up to 50-fold superior neutralization potency compared with the other subclasses. Our data point to a strong protective effect of IgG3 Abs in SARS-CoV-2 infection and suggest that superior neutralization might be a consequence of cross-linking the SP on the viral surface. This should be considered in therapy and vaccine development. In addition, we underscore the versatile use of plants for the rapid expression of complex proteins in emergency cases.


Sign in / Sign up

Export Citation Format

Share Document