scholarly journals Research of Application of Anti-Turbulent and Depressor Additives in Pipeline Transport of High Viscosity Oils

2021 ◽  
Vol 137 (6) ◽  
pp. 54-56
Author(s):  
A. K. Nikolaev ◽  
◽  
E. S. Demenin ◽  
K. I. Plotnikova ◽  
◽  
...  

The use of anti-turbulent and depressant additives makes it possible to increase the efficiency of oil pipelines transporting high-viscosity oil. In this method, the principle of increasing the efficiency of transportation is based on reducing the hydraulic resistance and increasing the fluidity of oil. The work carried out a theoretical study of the existing types of anti-turbulent and depressant additives. This article presents an experimental study of the effect of the MR 1088 depressant additive on an oil sample from the Usa – Ukhta main oil pipeline.

Author(s):  
Andrey V. Zakharchenko ◽  
◽  
Alexander E. Gonchar ◽  
Roman Y. Shestakov ◽  
Polina V. Pugacheva ◽  
...  

The procedure for action in cases of a threat or an accident at oil pipeline transport facilities is defined in the relevant plans for emergency spillage prevention and response – ESPR. The purpose of the article is to analyze the requirements of the legislation in the field of development and approval of ESPR. The specifics of ESRP development at trunk pipeline facilities in Russia are noted, the US experience in combating oil and oil products spillage is presented. The problematic issues in the development and approval of ESRP, relevant for the domestic system of main oil pipeline transport, have been considered. It was established that the Federal Law No. 207-FL, adopted in July 2020, fundamentally changed the outdated and required revision approach to the coordination and approval of ESRP. At the same time, further work is needed to create a regulatory framework that establishes requirements for ESRP, as well as to improve ESRP, taking into account modern methods of predicting accidents, identifying emergencies, risk-oriented approaches to planning measures to localize and eliminate accidents, the specifics of operating organizations.


2011 ◽  
Vol 8 (1) ◽  
pp. 201-210
Author(s):  
R.M. Bogdanov

The problem of determining the repair sections of the main oil pipeline is solved, basing on the classification of images using distance functions and the clustering principle, The criteria characterizing the cluster are determined by certain given values, based on a comparison with which the defect is assigned to a given cluster, procedures for the redistribution of defects in cluster zones are provided, and the cluster zones parameters are being changed. Calculations are demonstrating the range of defect density variation depending on pipeline sections and the universal capabilities of linear objects configuration with arbitrary density, provided by cluster analysis.


Author(s):  
Марат Замирович Ямилев ◽  
Азат Маратович Масагутов ◽  
Александр Константинович Николаев ◽  
Владимир Викторович Пшенин ◽  
Наталья Алексеевна Зарипова ◽  
...  

Теплогидравлический расчет неизотермических трубопроводов является наиболее важным гидравлическим расчетом в рамках решения задач обеспечения надежности и безопасности работы нефтепроводной системы. Для практических расчетов применяются формулы Дарси - Вейсбаха и Лейбензона. При этом в ряде случаев (короткие теплоизолированные участки, поверхностный обогрев нефтепроводов) можно использовать упрощенный подход к расчету, пренебрегая изменением температуры или учитывая температурные поправки. В настоящее время формулы для аналитического расчета движения высоковязких нефтей в форме уравнения Лейбензона получены только для ньютоновской и вязкопластичной жидкостей. Для степенной жидкости соответствующие зависимости отсутствуют, расчет ведется с использованием формулы Дарси - Вейсбаха. Целью настоящей статьи является представление формулы Дарси - Вейсбаха для изотермических течений степенной жидкости в форме уравнения Лейбензона. Данное представление позволит упростить процедуру проведения аналитических выкладок. В результате получены модифицированные уравнения Лейбензона для определения потери напора на участке нефтепровода в диапазоне индекса течения от 0,5 до 1,25. В указанном диапазоне относительное отклонение от результатов расчетов с использованием классических формул Метцнера - Рида и Ирвина не превышает 2 %. The thermal-hydraulic calculation of non-isothermal pipelines is the most important hydraulic calculation in the framework of solving the problems of ensuring the reliability and safety of the oil pipeline system. For practical calculations, the Darcy - Weisbach and Leibenson formulas are used. Moreover, in a number of cases (short heat-insulated sections, surface heating of oil pipelines), a simplified approach to the calculation can be used, neglecting temperature changes or taking into account temperature corrections. At present, formulas for the analytical calculation of the motion of high-viscosity oils in the form of the Leibenson equation have been obtained only for Newtonian and viscoplastic fluids. For a power-law fluid, there are no corresponding dependences; the calculation is carried out using the Darcy - Weisbach formula. The purpose of this article is to present the Darcy - Weisbach formula for isothermal flows of a power-law fluid in the Leibenzon form, which will simplify the procedure for performing analytical calculations. The modified Leibenzon equations are obtained to determine the head loss in the oil pipeline section in the range of the flow index from 0.5 to 1.25. In the specified range, the relative deviation from the results of calculations using the classical Metzner - Reed and Irwin formulas does not exceed 2 %.


2020 ◽  
Vol 69 (1) ◽  
pp. 56-61
Author(s):  
L. Yermekkyzy ◽  

The results of solving the inverse problem of determining the hydraulic resistance of a main oil pipeline are presented. The formulation of the inverse problem is formulated, a numerical method for solving the system of equations is described. The hydraulic resistance of the pipeline during the "hot" pumping of high-curing and high-viscosity oil changes during operation. Oil temperature decreases along the length of the pipeline due to heat transfer from the soil, leading to an increase in oil viscosity and an increase in hydraulic resistance.The dependence of the hydraulic resistance of the pipeline on the parameters of oil pumping is determined by solving the inverse problem. The inverse problem statement consists of a system of equations of laws of conservation of momentum, mass, energy and hydraulic resistance in the form of Altshul with unknown coefficients. The system of partial differential equations of hyperbolic type for speed and pressure is solved by the numerical method of characteristics, and the heat transfer equations by the iterative method of running counting.


2002 ◽  
Vol 124 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Takaaki Sakai ◽  
Masaki Morishita ◽  
Koji Iwata ◽  
Seiji Kitamura

Experimental validation of the design guideline to prevent the failure of a thermometer well by vortex-induced vibration is presented, clarifying the effect of structure damping on displacement amplitudes of a cantilever cylinder. The available experimental data in piping are limited to those with small damping in water flow, because of the difficulty in increasing structure damping of the cantilever cylinders in experiments. In the present experiment, high-viscosity oil within cylinders is used to control their structure damping. Resulting values of reduced damping Cn are 0.49, 0.96, 1.23, 1.98, and 2.22. The tip displacements of the cylinder induced by vortex vibration were measured in the range of reduced velocity Vr from 0.7 to 5 (Reynolds number is 7.8×104 at Vr=1). Cylinders with reduced damping 0.49 and 0.96 showed vortex-induced vibration in the flow direction in the Vr>1 region. However, in cases of reduced damping of 1.23, 1.98, and 2.22, the vibration was suppressed to less than 1 percent diameter. It is confirmed that the criteria of “Vr<3.3 and Cn>1.2” for the prevention of vortex-induced vibration is reasonably applicable to a cantilever cylinder in a water flow pipe.


Author(s):  
Fa´bio Braga de Azevedo ◽  
Rafael Familiar Solano ◽  
Julian de Freitas Hallai ◽  
Carlos Terencio Bomfimsilva

The Petrobras Capixaba North Terminal - TNC is located in the state of Espirito Santo, in Brazil and is being built to receive the heavy and high viscosity oil produced onshore in the Fazenda Alegre field. This oil shall be heated prior to be pumped into the pipelines and it will be exported through a monobuoy and a tanker system. The two export pipelines are being laid to connect the onshore Terminal to a subsea PLEM to be installed under the monobuoy. The pipelines and PLEM were designed to operate with oil containing H2S in cyclic high temperature. This paper addresses the special concerns defined by the design activity to cope with the TNC operation conditions. It also focuses the modifications imposed to the installation process to fulfill the design and operation requirements.


2015 ◽  
Vol 642 ◽  
pp. 72-77
Author(s):  
Yuh Ping Chang ◽  
Huann Ming Chou ◽  
Gino Wang ◽  
Jin Chi Wang

The poor quality of machining surfaces caused by the surface wear of the pressing dies and the corrosion of the pressing parts has been a major concern for manufacturing engineers. In order to decrease the surface wear of the pressing dies and the corrosion of the pressing parts, the drawing oil is always used during the pressing process. It is well known that the properties and the distributions of the drawing oil significantly influence lubrication, cool down, cleanness and stabilization for the pressing dies and parts. Therefore, it is very important for the operating limitation of the pressing process. This paper is base on the above statements to further investigate the effects of the high viscosity drawing oil on the tribological properties and the adhesions between the dies and parts. The results have not only an added advantage of technology of pressing process, but they are also very helpful in design the pair of the dies and parts in the future. Moreover, the purpose of better quality and faster product speed of the pressing process can then be obtained for the industry.


2013 ◽  
Vol 28 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Shufan Wang ◽  
Hong-Quan Zhang ◽  
Cem Sarica ◽  
Eduardo Pereyra

2020 ◽  
pp. 140-148 ◽  
Author(s):  
A. U. Yakupov ◽  
D. A. Cherentsov ◽  
K. S. Voronin ◽  
Yu. D. Zemenkov

According to the annual reports of oil companies, there is an increase in the production of high-viscosity and ultra-high-viscosity oil. At the same time, responsibility for the transportation of the product, which can occur under unsteady conditions and lead to emergency situations, is intensified. Thus, a forced shutdown of an oil pipeline during transportation of high-viscosity oil can cause the product to cool below critical temperatures, and further launch of the oil pipeline will be impossible. In this regard, the task of calculating the safe shutdown time of the oil pipeline has particular relevance. We have carried out a numerical study to determine the effect of the structural features of the heat stabilizer during the cooling time of oil in a stopped oil pipeline. The values of the cooling time of oil from the action of heat stabilizers, made by various manufacturers, were established. In addition, the effect of the length of the evaporation part and the installation distance of the heat stabilizer from the oil pipeline during the cooling time was studied.


Sign in / Sign up

Export Citation Format

Share Document