scholarly journals Antifungal Activity and Physicochemical Properties of a Novel Antimicrobial Protein AMP-17 from Musca domestica

2019 ◽  
Vol 68 (3) ◽  
pp. 383-390
Author(s):  
LONG-BING YANG ◽  
GUO GUO ◽  
XIN-YU ZHAO ◽  
PEI-PEI SU ◽  
PING FU ◽  
...  

Antimicrobial peptides (AMPs) are cationic small peptide chains that have good antimicrobial activity against a variety of bacteria, fungi, and viruses. AMP-17 is a recombinant insect AMP obtained by a prokaryotic expression system. However, the full antifungal activity, physicochemical characteristics, and cytotoxicity of AMP-17 were previously unknown. AMP-17 was shown to have good antifungal activity against five pathogenic fungi, with minimum inhibitory concentrations (MIC) of 9.375–18.75 μg/ml, and minimum fungicidal concentrations (MFC) of 18.75–37.5 μg/ml. Notably, the antifungal activity of AMP-17 against Cryptococcus neoformans was superior to that of other Candida spp. In addition, the hemolytic rate of AMP-17 was only 1.47%, even at the high concentration of 16 × MIC. AMP-17 was insensitive to temperature and high salt ion concentration, with temperatures of 98°C and –80°C, and NaCl and MgCl2 concentrations of 50–200 mmol/l, having no significant effect on antifungal activity. However, AMP-17 was sensitive to proteases, trypsin, pepsin, and proteinase K. The elucidation of antifungal activity, physicochemical properties and cytotoxicity of AMP-17 provided an experimental basis for its safety evaluation and application, as well as indicated that AMP-17 might be a promising drug.

2020 ◽  
Vol 1 (1) ◽  
pp. 35
Author(s):  
Fitria Rizka Hidayat ◽  
Sukiman Sukiman ◽  
Ernin Hidayati ◽  
Sarkono Sarkono ◽  
Bambang Fajar Suryadi ◽  
...  

Candida albicans and Cryptoccocus neoformans are opportunistic pathogenic fungi that cause infectious diseases that are the world's biggest health problems. The use of antibiotics is one way to overcome the spread of the infection and cause microbial resistance. Ganoderma is one of the many macrophages found on Lombok's island, and studies of its antifungal activity have not been carried out. The purpose of this study was to determine the antifungal potential and the effect of different concentrations of ethanolic extracts of three Ganoderma species on C. albicans and C. neoformans. Ganoderma samples were obtained from Suranadi Taman Wisata Alam (TWA), Sesaot TWA, Tunak Mountain TWA, Kerandangan TWA, and Pusuk Forest. Ganoderma extraction was carried out by the maceration method using ethanol 95% solvent. The extract concentrations used are 20%, 40%, 60% and 80%. This research was conducted using the wells method with metronidazole as a positive control and 50% DMSO as a negative control. The parameter measured is the large diameter of the inhibition zone formed around the well. The results obtained are the three species of Ganoderma have antifungal activity against test fungi, and different levels of concentration affect inhibition. The amount of the inhibition zone is directly proportional to the high concentration of the extract. All three Ganoderma species are more effective in inhibiting the growth of C. neoformans compared with Candida albicans


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 102
Author(s):  
Matthew Jamison ◽  
Xiao Wang ◽  
Tina Cheng ◽  
Tadeusz Molinski

Bengazoles A–G from the marine sponge Jaspis sp. exhibit potent in vitro antifungal activity against Candida spp. and other pathogenic fungi. The mechanism of action (MOA) of bengazole A was explored in Candida albicans under both liquid culture and surface culture on Mueller-Hinton agar. Pronounced dose-dependent synergistic antifungal activity was observed with bengazole A in the presence of bengamide A, which is also a natural product from Jaspis sp. The MOA of bengazole A was further explored by monitoring the sterol composition of C. albicans in the presence of sub-lethal concentrations of bengazole A. The GCMS of solvent extracts prepared from liquid cultures of C. albicans in the presence of clotrimazole―a clinically approved azole antifungal drug that suppresses ergosterol biosynthesis by the inhibition of 14α-demethylase―showed reduced cellular ergosterol content and increased concentrations of lanosterol and 24-methylenedihydrolanosterol (a shunt metabolite of ergosterol biosynthesis). No change in relative sterol composition was observed when C. albicans was cultured with bengazole A. These results eliminate an azole-like MOA for the bengazoles, and suggest that another as-yet unidentified mechanism is operative.


2019 ◽  
Vol 18 (29) ◽  
pp. 2481-2490 ◽  
Author(s):  
Ana Cláudia de Macêdo Andrade ◽  
Pedro Luiz Rosalen ◽  
Irlan Almeida Freires ◽  
Luciana Scotti ◽  
Marcus Tulius Scotti ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 773
Author(s):  
Ayodeji Precious Ayanwale ◽  
Brenda Lizbeth Estrada-Capetillo ◽  
Simón Yobanny Reyes-López

High doses of antimicrobial agents are a huge threat due to the increasing number of pathogenic organisms that are becoming resistant to antimicrobial agents. This resistance has led to a search for alternatives. Therefore, this study presents the synthesis and characterization of ZrO2-Ag2O nanoparticles (NPs) by sol-gel. The NPs were analyzed by dynamic light scattering (DLS), UV-visible (UV-vis), Raman and scanning electron microscopy (SEM). The NPs were later evaluated for their antifungal effects against Candidaalbicans, Candida dubliniensis, Candida glabrata, and Candida tropicalis, using disc diffusion and microdilution methods, followed by the viability study. The DLS showed sizes for ZrO2 76 nm, Ag2O 50 nm, and ZrO2-Ag2O samples between 14 and 42 nm. UV-vis shows an absorption peak at 300 nm for ZrO2 and a broadband for Ag2O NPs. Raman spectra were consistent with factor group analysis predictions. SEM showed spherically shaped NPs. The antifungal activity result suggested that ZrO2-Ag2O NPs were effective against Candida spp. From the viability study, there was no significance difference in viability as a function of time and concentration on human mononuclear cells. This promising result can contribute toward the development of alternative therapies to treat fungal diseases in humans.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1244
Author(s):  
Malik Adil Nawaz ◽  
Tanoj Kumar Singh ◽  
Regine Stockmann ◽  
Hema Jegasothy ◽  
Roman Buckow

The objective of this research was to develop a model faba bean drink with a high concentration of protein (>4% w/w). The protein molecular weights and frequency for both faba and soy were assessed using SDS-PAGE. Results showed similarities in the protein molecular weight of both faba and soy (mainly 11S globulin ~Glycinin and 7S globulin ~β-conglycinin). Thus, faba can be considered as a potential soy replica in plant-based milk beverages. Oil-in-water emulsions (5–8% w/w available protein) were prepared using faba bean protein concentrate (FPC), 1% sunflower oil, and 0.2% sunflower lecithin. These emulsions were used as model beverages and were further investigated for UHT processibility, stability, and physicochemical properties. The physicochemical properties of emulsions at various processing stages viz., coarse emulsification, homogenisation, and UHT, were measured. An increase in the protein concentration and thermal treatment resulted in an increased oil droplet size, coalescence and flocculation, and protein aggregation. Lower protein concentrations viz., 5–6%, showed greater negative ζ-potential, and thereby, high dispersibility through enhanced electrostatic repulsions than those of higher concentrations (7–8%). Furthermore, an increase in protein concentration and UHT treatment resulted in an increased creaming index. In total, 21 different volatile compounds were detected and quantified, representing different chemical classes, namely alcohols, aldehydes, ketones, esters, furan, and acids. These volatiles have major consequences for the overall flavour chemistry of the model beverage product. Overall, this study showed the potential for application of faba bean as a protein source in UHT-treated legume-based beverages and identified areas for further development.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4087
Author(s):  
Marta Szekalska ◽  
Aleksandra Citkowska ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka

Fungal infections and invasive mycoses, despite the continuous medicine progress, are an important globally therapeutic problem. Multicompartment dosage formulations (e.g., microparticles) ensure a short drug diffusion way and high surface area of drug release, which as a consequence can provide improvement of therapeutic efficiency compared to the traditional drug dosage forms. As fucoidan is promising component with wide biological activity per se, the aim of this study was to prepare fucospheres (fucoidan microparticles) and fucoidan/gelatin microparticles with posaconazole using the one-step spray-drying technique. Pharmaceutical properties of designed fucospheres and the impact of the gelatin addition on their characteristics were evaluated. An important stage of this research was in vitro evaluation of antifungal activity of developed microparticles using different Candida species. It was observed that gelatin presence in microparticles significantly improved swelling capacity and mucoadhesiveness, and provided a sustained POS release. Furthermore, it was shown that gelatin addition enhanced antifungal activity of microparticles against tested Candida spp. strains. Microparticles formulation GF6, prepared by the spray drying of 20% fucoidan, 5% gelatin and 10% Posaconazole, were characterized by optimal mucoadhesive properties, high drug loading and the most sustained drug release (after 8 h 65.34 ± 4.10% and 33.81 ± 5.58% of posaconazole was dissolved in simulated vaginal fluid pH 4.2 or 0.1 M HCl pH 1.2, respectively).


Author(s):  
Cong You ◽  
Jun Yu ◽  
Guangjiong Qin ◽  
JinPeng Yang ◽  
Chunlei Yang ◽  
...  

Abstract Background Artemisia hedinii is a well-known traditional Chinese medicine. It can be used to extract dihydroartemisinin (DHA). Objective The purpose of this study was to explore the optimal conditions for the homogenate extraction of DHA from A. hedinii and the antifungal activity of DHA. Methods In this study, single factor experiments and response surface method were used to determine the optimal extraction conditions of crude extract and DHA, the method of spore germination was used to study the antifungal activity of DHA to Alternaria alternata. Result The optimal conditions were found as fellow: ratio of liquid to material 22 mL/g; Extraction time 60 s; soaking time 34 min. Under these conditions, extraction yield of DHA was (1.76 ± 0.04%). When the concentration of crude extract were 0.5 and 8 mg/mL, the spore germination inhibition rates of Alternaria alternata were (17.00 ± 2.05%) and (92.56 ± 2.01%), which were 3.34 and 1.15 times that of DHA standard, respectively. Conclusion Homogenate extraction technology is a fast and efficient method to extract DHA from A. hedinii. The crude extract has significant antifungal activity against A. alternata with low cost, which provides a possibility for the use of DHA in the prevention and treatment of plant pathogenic fungi. Highlights The optimum conditions of the extraction of DHA from A. hedinii by homogenate extraction were obtained. DHA has antifungal activity against A. alternata. Compared with pure DHA, the crude extract has stronger antifungal activity against A. alternata.


2021 ◽  
Vol 14 (5) ◽  
pp. 397
Author(s):  
Carlos Benavent ◽  
Carlos Torrado-Salmerón ◽  
Santiago Torrado-Santiago

The aim of this study was to improve the treatment of Candida albicans biofilms through the use of nystatin solid dispersions developed using maltodextrins as a hyperosmotic carrier. Characterization studies by differential scanning calorimetry, X-ray diffraction, dissolution studies, and particle size analysis were performed to evaluate changes in nystatin crystallinity. Antifungal activity and anti-biofilm efficacy were assessed by microbiological techniques. The results for nystatin solid dispersions showed that the enhancement of antifungal activity may be related to the high proportions of maltodextrins. Anti-biofilm assays showed a significant reduction (more than 80%) on biofilm formation with SD-N:MD [1:6] compared to the nystatin reference suspension. The elaboration process and physicochemical properties of SD-N:MD [1:6] could be a promising strategy for treatment of Candida biofilms.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 998
Author(s):  
Virgínia Barreto Lordello ◽  
Andréia Bagliotti Meneguin ◽  
Sarah Raquel de Annunzio ◽  
Maria Pía Taranto ◽  
Marlus Chorilli ◽  
...  

Background: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of Candida spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic Enterococcus faecium CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against Candida albicans. Methods and Results: The ODF was composed by carboxymethylcellulose, gelatin, and potato starch, and its physical, chemical, and mechanical properties were studied. The probiotic resistance and viability during processing and storage were evaluated as well as its in vitro antifungal activity against C. albicans. The ODFs were thin, resistant, and flexible, with neutral pH and microbiologically safe. The probiotic resisted the ODF obtaining process, demonstrating high viability (>9 log10 CFU·g−1), up to 90 days of storage at room temperature. The Probiotic Film promoted 68.9% of reduction in fungal early biofilm and 91.2% in its mature biofilm compared to the group stimulated with the control film. Those results were confirmed through SEM images. Conclusion: The probiotic ODF developed is a promising strategy to prevent oral candidiasis, since it permits the local probiotic delivery, which in turn was able to reduce C. albicans biofilm formation.


2021 ◽  
Vol 7 (3) ◽  
pp. 163 ◽  
Author(s):  
Sabelle Jallow ◽  
Nelesh P. Govender

Ibrexafungerp (formerly SCY-078 or MK-3118) is a first-in-class triterpenoid antifungal or “fungerp” that inhibits biosynthesis of β-(1,3)-D-glucan in the fungal cell wall, a mechanism of action similar to that of echinocandins. Distinguishing characteristics of ibrexafungerp include oral bioavailability, a favourable safety profile, few drug–drug interactions, good tissue penetration, increased activity at low pH and activity against multi-drug resistant isolates including C. auris and C. glabrata. In vitro data has demonstrated broad and potent activity against Candida and Aspergillus species. Importantly, ibrexafungerp also has potent activity against azole-resistant isolates, including biofilm-forming Candida spp., and echinocandin-resistant isolates. It also has activity against the asci form of Pneumocystis spp., and other pathogenic fungi including some non-Candida yeasts and non-Aspergillus moulds. In vivo data have shown IBX to be effective for treatment of candidiasis and aspergillosis. Ibrexafungerp is effective for the treatment of acute vulvovaginal candidiasis in completed phase 3 clinical trials.


Sign in / Sign up

Export Citation Format

Share Document