scholarly journals Formation Conditions for Epitaxial Graphene on Diamond (111) Surfaces

2018 ◽  
Vol 2 (1) ◽  

The phase transformation from a non-terminated diamond (111) surface to graphene has in the present study been simulated by using ab initio MD calculations at different temperatures and under various reaction conditions. For strict vacuum conditions, the graphitization process was observed to start at about 800 K, with a final graphene-like ad layer obtained at 2500 K. The C-C bonds across the interface were found to be broken gradually with an increase in temperature. The resulting graphene-like ad layer at 2500 K was observed to chemisorb to the underlying diamond surface with 33% of the initial C-C bonds, and with a C-C covalent energy value of 3.4 eV. The corresponding DOS spectra showed a p-doped character, as compared with graphene. When introducing H radicals during the annealing process, a graphene-like ad layer started to be formed at a much lower temperature; 500K.The completeness of the diamond-to-graphene process was found to strongly depend on the concentration of H radicals. When introducing a larger concentration of H radicals into the lattice in the initial part of the annealing process, the formation of a free-standing graphene layer was observed to take place at an even lower H concentration and temperature (1000 K).

2021 ◽  
Vol 37 (3) ◽  
pp. 626-633
Author(s):  
Bhawana Arora ◽  
Jitendra Ojha ◽  
Pallavi Mishra

Oxidation of secondary alcohols is an important part of synthetic organic chemistry. Various studies are carried out at different reaction conditions to determine the best mechanistic pathways. In our study, oxidation of different secondary alcohols was done by using Benzimidazolium Fluorochromate in Dimethyl Sulphoxide, which is a non-aqueous solvent. Oxidation resulted in the formation of ketonic compounds. The reaction showed first order kinetics both in BIFC and in the alcohols. Hydrogen ions were used to catalyze the reaction. We selected four different temperatures to carry out our study. The correlation within the activation parameters like enthalpies and entropies was in accordance with the Exnerʼs criterion. The deuterated benzhydrol (PhCDOHPh) oxidation exhibited an important primary kinetic isotopic effect (kH / kD = 5.76) at 298 K. The solvent effect was studied using the multiparametric equations of Taft and Swain. There was no effect of addition of acrylonitrile on the oxidation rate. The mechanism involved sigmatropic rearrangement with the transfer of hydrogen ion taking place from alcohol to the oxidant via a cyclic chromate ester formation.


2012 ◽  
Vol 72 (2) ◽  
pp. 343-351 ◽  
Author(s):  
MC. Bittencourt-Oliveira ◽  
B. Buch ◽  
TC. Hereman ◽  
JDT. Arruda-Neto ◽  
AN. Moura ◽  
...  

Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju (Ordem Nostocales) is one of the most troublesome bloom-forming species in Brazil. Understanding the population dynamics of the different morphotypes of C. raciborskii (straight and coiled) could assist in the prediction of favourable conditions for the proliferation of this potentially toxin-producing species. The aim of the present study was to assess the effects of two different light intensities and temperatures on the growth rate and morphology of the trichomes of the straight and coiled morphotypes. For such, two non-toxin producing strains of C. raciborskii were used - one with a coiled trichome (ITEP31) and another with a straight trichome (ITEP28). The strains were cultured in BG-11 medium in a climatic chamber under controlled conditions. Two light intensities (30 and 90 µmol.m-2.s-1 ) were combined at temperatures of 21 and 31 °C and the growth rate and morphological changes were analysed. The morphotypes responded differently to the different temperatures and light intensities. Both strains exhibited faster growth velocities when submitted to higher light intensity and temperature. The lower temperature and higher luminosity hampered the development of both strains. Variations in cellular morphology and an absence of akinetes in both strains were related to the lower temperature (21 °C). The coiled morphotype demonstrated considerable phenotype plasticity, changing the morphology of trichome throughout its growth curve. Although molecular analysis does not sustain the separation of the morphotypes as distinct species, their different eco-physiological responses should be considered further knowledge of extreme importance for the population control of these potentially toxic organisms.


2019 ◽  
Vol 38 (2019) ◽  
pp. 590-600
Author(s):  
Marie Kvapilova ◽  
Jiri Dvorak ◽  
Petr Kral ◽  
Karel Hrbacek ◽  
Vaclav Sklenicka

AbstractThe cast nickel-base MAR-M247 superalloy has been widely used for high-temperature components. In this work, the creep behaviour of two alternates of MAR-M247 superalloy with different grain size processed at different temperatures of casting are compared. Under the creep testing conditions used in this study, only negligible differences of creep behaviour of the alternate alloys were found and the evaluated creep characteristics correspond to the power-law or dislocation creep. The microstructure of the alloys consists of a𝛾matrix with a eutectic,𝛾'strengthening cubic precipitates, and M6C and M23C6carbides. Increasing the temperature induces the dissolution of some M23C6carbides. Fractures of both variants of alloys exhibit a more ductile character at higher temperatures, while at lower temperature a mixture of brittle and ductile fracture modes was observed, which changes the creep fracture ductility.


1993 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
M. Ghazi ◽  
J. Barrault

Due to their important activity and selectivity, nickel catalysts are often used to realize the methanation reaction; however, the usual process based on these catalysts is not fitted for the present economic situation. To raise their stability, three catalysts with similar nickel content but calcinated at different temperatures have been studied for the reaction of methanation. The results obtained show that the catalyst calcinated at the highest temperature (973 K) shows the greatest promise because a great part of its activity and of its stability is preserved even when the reaction conditions are extreme (temperature of 773 K).


NANO ◽  
2018 ◽  
Vol 13 (08) ◽  
pp. 1850093 ◽  
Author(s):  
Shasha Gai ◽  
Jiqing Jiao ◽  
Wei Wei ◽  
Yao Li ◽  
Lihua Liu ◽  
...  

The well-defined NaGdF4:Yb,Er nanorods (NRs) with various aspect ratios were synthesized using a facile hydrothermal method. The morphology and crystal phase of NRs could be controlled by reaction conditions. NaGdF4:Yb,Er NRs with various aspect ratios could be synthesized and their upconversion (UC) luminescence was tuned. It is displayed that the NRs with aspect ratios about 5 exhibited the strongest UC luminescence among samples. The growth mechanism and morphology transition of NRs had been deduced by schematic diagram. And UC mechanism had been determined by energy level diagrams. Compared with previous reports, the work provided a facial method for UCNRs with various aspect ratios at lower temperature.


2001 ◽  
Vol 204 (11) ◽  
pp. 2029-2033
Author(s):  
Frank B. Jensen

SUMMARY Autoxidation of oxyhaemoglobin (oxyHb) to methaemoglobin was measured at different temperatures in haemoglobin solutions from Atlantic hagfish, river lamprey, common carp, yellowfin tuna and pig. The aims were to evaluate the impact of the absent distal histidine in hagfish haemoglobin, the importance of oxyHb being either monomeric (hagfish and lamprey) or tetrameric (carp, tuna and pig) and to gain information on the temperature-sensitivity of autoxidation. The rate of autoxidation was lower in hagfish than in carp, yellowfin tuna and lamprey haemoglobins at any given temperature. Substitution of the distal histidine residue (His E7) with glutamine in hagfish haemoglobin was therefore not associated with an accelerated autoxidation, as might be expected on the basis of the normal protective role of His E7. Glutamine may have similar qualities to histidine and be involved in the low susceptibility to autoxidation. The low oxidation rate of hagfish haemoglobin, together with an oxidation rate of lamprey haemoglobin that did not differ from that of carp and yellowfin tuna haemoglobins, also revealed that autoxidation was not accelerated in the monomeric oxyhaemoglobins. Pig haemoglobin was oxidised more slowly than fish haemoglobins, demonstrating that fish haemoglobins are more sensitive to autoxidation than mammalian haemoglobins. The rate of autoxidation of hagfish haemoglobin was, however, only significantly greater than that of pig haemoglobin at high temperatures. Autoxidation was accelerated by rising temperature in all haemoglobins. Arrhenius plots of carp and yellowfin tuna haemoglobin revealed a break at 25°C, reflecting a lower temperature-sensitivity between 5 and 25°C than between 25 and 40°C.


1962 ◽  
Vol 42 (1) ◽  
pp. 142-149 ◽  
Author(s):  
H. Tiessen

Fireball tomato and Calwonder pepper plants were subjected, in the seedling stage, to different temperatures and to both drench and foliar applications of (2-chloroethyl) trimethylammonium chloride (CCC) and (allyl) trimethylammonium bromide (AMAB).Seedlings were exposed to minimum night temperatures of 54° to 56°F. and of 64° to 68°F. from the appearance of the first true leaf for 3 weeks for peppers and until field setting (6 weeks) for tomatoes. For both crops the lower temperature treatment gave an increase in early fruit number and yield.Drench applications of 100 milliliters per band to tomatoes and 900 milliliters per square foot to peppers of 10−3 and 10−4 M solutions of CCC or of AMAB produced shorter, stockier, darker-green plants with reduced foliage spread. Growth was further reduced by the lower temperature treatments. Both drenches reduced total yields in both tomatoes and peppers.Foliar treatments of CCC and of AMAB increased the total yield of peppers started at the warmer temperature. At the cooler temperature, however, yield was not affected by the CCC treatment but was reduced by the AMAB treatment. Foliar treatments with either chemical did not affect the total yield of tomatoes after seedling treatment at either temperature.


2020 ◽  
Vol 55 (3) ◽  
pp. 221-228
Author(s):  
HA Simol ◽  
R Sultana ◽  
M Y A Mollah ◽  
MS Miran

Nanocrystalline Fe3O4 and Fe2O3 particles were successfully synthesized by an innovative hybrid electrochemical-thermal method. The as-prepared compound was calcined for an hour from 100 to 600oC temperatures. The crystallinity, morphology and chemical state of the synthesized powders were characterized by XRD, TG-DTA, SEM/EDS, FT-IR, and UV–Vis spectral techniques after calcinations. The Brunauer–Emmett–Teller (BET) plots confirmed that iron oxide nanoparticles (NPs) calcined at 400oC has a surface area of 18.28 m2 g-1 with a total pore volume of 0.2064 cc g-1. From XRD pattern it is revealed that the precursor calcined at lower temperature (100-400oC) correspond to Fe3O4,while the ones calcined at higher temperature follow Fe2O3 pattern. The morphology of iron oxide NPs calcined at different temperatures were studied with scanning electron microscope (SEM) and exhibits spherical shaped geometries with average diameters of 80-150nm. Bangladesh J. Sci. Ind. Res.55(3), 221-228, 2020


2019 ◽  
Vol 75 (8) ◽  
pp. 1036-1044 ◽  
Author(s):  
Małgorzata Katarzyna Cabaj ◽  
Roman Gajda ◽  
Anna Hoser ◽  
Anna Makal ◽  
Paulina Maria Dominiak

Crystals of hypoxanthinium (6-oxo-1H,7H-purin-9-ium) nitrate hydrates were investigated by means of X-ray diffraction at different temperatures. The data for hypoxanthinium nitrate monohydrate (C5H5N4O+·NO3 −·H2O, Hx1) were collected at 20, 105 and 285 K. The room-temperature phase was reported previously [Schmalle et al. (1990). Acta Cryst. C46, 340–342] and the low-temperature phase has not been investigated yet. The structure underwent a phase transition, which resulted in a change of space group from Pmnb to P21/n at lower temperature and subsequently in nonmerohedral twinning. The structure of hypoxanthinium dinitrate trihydrate (H3O+·C5H5N4O+·2NO3 −·2H2O, Hx2) was determined at 20 and 100 K, and also has not been reported previously. The Hx2 structure consists of two types of layers: the `hypoxanthinium nitrate monohydrate' layers (HX) observed in Hx1 and layers of Zundel complex H3O+·H2O interacting with nitrate anions (OX). The crystal can be considered as a solid solution of two salts, i.e. hypoxanthinium nitrate monohydrate, C5H5N4O+·NO3 −·H2O, and oxonium nitrate monohydrate, H3O+(H2O)·NO3 −.


2013 ◽  
Vol 864-867 ◽  
pp. 1699-1703
Author(s):  
Ji Ming Wu ◽  
Sheng Gao Cheng

The paper focused on a self-developed methodology through using sulfur dioxide to deal with high concentration of chromium-containing wastewater. It studied the effects of different pH values, different reaction time, different temperatures and different amounts of sulfur with sulfur dioxide reduction reaction on the chromium-containing wastewater. The results showed that: when the reaction conditions were controlled as follows: the pH values ranged from 2 to 4, the reaction temperature was controlled 40~60°C, the amount of sulfur in theoretical was 1.2 times and the reaction time was 40 min, the hexavalent chromium in the high concentrations of chromium-containing wastewater could be effectively removed.


Sign in / Sign up

Export Citation Format

Share Document