scholarly journals Tribological Property Study of Xanthate Acetic Ester in Hydrogenated Oil

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Juanhong LEI ◽  
Jian LIU ◽  
Liping XIONG ◽  
Xue YANG ◽  
Zhongyi HE

Xanthate was used as an initial reactant to synthesis two kinds of novel xanthate-containing acetic ester additives (HX and OX), and a four-ball machine was used as tribological tester to appraise their tribological behaviors in hydrogenated oil (10cst). The test results indicated that the as-synthesized additives possess good extreme pressure, antiwear and antifriction properties. The shorter carbon chains acetic ester, the better tribological properties the higher sulfur content. The action mechanism was estimated by analysis of the XPS (X-ray photoelectron spectroscopy) and SEM (scanning electron microscope) results of the worn steel ball surface, and the results illustrated that the protective film containing ferric sulfide and ferric sulfate compound was formed on the worn steel ball surface by xanthate acetic ester , and the protective film has good tribological properties.

2012 ◽  
Vol 236-237 ◽  
pp. 123-127 ◽  
Author(s):  
Chao Long Li ◽  
Li Ping Xiong ◽  
Hong Liu ◽  
Li Ting Xiong ◽  
Wei Wang

A novel ester derivative, dodecyl xanthate acetic dodecyl xanthate ester(DXAD) was synthesized and it’s tribological behaviors as additives in hydrogenated oil, were evaluated using a four-ball tester. Results show that the compound possesses good antiwear performance, extreme pressure capacity, and good friction-reducing property. The action mechanism was estimated through analysis of the worn surface with X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscope (SEM). The results of XPS and SEM analyses illustrate that the prepared compound as an additive in hydrogenated oil forms a protective film containing ferric sulfide and ferric sulfate compounds on the rubbed surface.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052038
Author(s):  
A V Sidashov ◽  
M V Boiko ◽  
E I Luneva ◽  
A M Popov

Abstract The combination of unique physicochemical, mechanical and tribological properties of diamond-like coatings determines the prospects for their use in critical friction units, including those operating in a rarefied atmosphere and vacuum. The properties of diamond-like carbon (DLC) coatings depend on the contribution of the sp2 and sp3 fractions of the carbon hybrid atomic electron orbitals. Modern methods of determining the graphite and diamond proportion in coatings are time-consuming and insufficiently accurate. In addition, the determination of the sp3/sp2 ratio is often difficult due to the displacement of the energy position of the C1s electron line. In this paper, the change in the chemical state of carbon over the thickness of a diamond-like coating is studied by X-ray photoelectron spectroscopy. Analysis of the carbon line fine structure of the differential graphite spectra (sp2 bonds) and diamond (sp3 bonds) allowed us to establish the parameter δ, which determines the ratio of the graphite and diamond components in the DLC coating. Profiling with Ar+ ions of the diamondlike coating surface showed that with an increase in the etching time, the proportion of amorphized carbon increases, which means that the antifriction properties increase with the abrasion of the coating. The obtained regularities allow us to predict changes in the tribological properties of DLC coatings during operation. Ion profiling also allows to determine the thickness of coatings with high accuracy.


2014 ◽  
Vol 1008-1009 ◽  
pp. 323-327 ◽  
Author(s):  
Ping Nan Wan ◽  
Jie Yang ◽  
You Quan Zhong

Two ashless triazine derivatives, 2,4-bi-amido-6-(O,O′-di-i-octhyl dithiophosphate)- 1,3,5 - triazine were synthesized. Their tribological properties as lubricating oil additives compared with ZDDP in hydrogenated oil were evaluated using a four-ball tester. The results show that these triazine derivatives possess extreme pressure capacity, and they can improve antiwear and friction-reducing performance of base stock than that of ZDDP. Their tribological performance is corresponding to the amide. The elements chemical states of the worn surface were estimated through X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The results show that a protective film containing sulphide, phosphate and some organic nitrogen compounds was formed on the worn surface during the lubrication process, and the film possesses extreme pressure and antiwear properties.


2013 ◽  
Vol 275-277 ◽  
pp. 1911-1914 ◽  
Author(s):  
Han Jun Hu ◽  
Hui Zhou ◽  
Yu Gang Zheng ◽  
Kai Feng Zhang ◽  
Zhi Hua Wan

The bonded MoS2 films are widely used as solid lubricants in aerospace mechanisms due to their excellent tribological properties. Traditionally, the MoS2 was directly bonded on the Al substrate that was only treated by the technique named of sandblast. For improving the tribological properties of MoS2 films, micro arc oxidation (MAO) instead of sandblast was introduced as a new technique for treating of Al substrate. In this article, the tribological properties of MoS2 films which were bonded on different surface of Al substrate as mentioned above were discussed, respectively. It was concluded from the test results that the MoS2 films bonded on substrate treated by MAO have better tribological properties than those samples treated by sandblast. The endurance life against abrasion of the former is as high as twenty times of the latter by the stand test method of ball on disk using the UMT Multi-Specimen Test System. This test results could be illustrated by the following reasons. The first is the porous microstructures of MAO ceramic coatings on the Al substrate. The coatings have numerous pits to be good at increasing the binding force with the MoS2 films, and the pits can also provide a MoS2 lubricants reservoir during processes of friction. Both of them improved the MoS2 film’s ability of wear-protective. The second is that hardness of the coating is higher than the Al, and this ensures well wearing resistance, especially in practical application to big load-supporting moving parts, such as bearing, gear, etc…


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7318
Author(s):  
Anita Ptak ◽  
Paula Taciak ◽  
Wojciech Wieleba

This article concerns the tribological properties of three selected polymer materials: polyamide PA6, polyethylene PE-HD and polyetheretherketone composite PEEK/BG during sliding against aluminium alloy EN AW-2017A in the presence of hydraulic oil HLP 68. The tests were carried out under contact pressure p of 3.5–11 MPa at ambient temperature T ranging from −20 °C to +20 °C. The dependence of kinetic friction coefficient μk on the two parameters was determined through tribological tests carried out using a pin-on-disc tribometer. A five-level central composite rotatable design (CCRD) was adopted for the experiment. All the test results were statistically analysed. The microhardness of the surface of the polymeric material was measured before and after the friction process. The surface was also examined under SEM. Temperature and contact pressure have been found to have a significant effect on the tribological properties of the tested sliding pairs. Relative to the applied friction conditions, the surfaces after friction showed rather heavy signs of wear.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanqiu Xia ◽  
Chen Chen ◽  
Xin Feng ◽  
Zhengfeng Cao

Purpose The purpose of this paper is to synthesize a kind of core-shell Ag@polyaniline (Ag@PAN) as a lubricant additive to improve the friction reduction and anti-wear abilities of lithium-based complex grease. Design/methodology/approach The core-shell Ag@PAN was prepared by a simple method and was introduced into the lithium-based complex grease. The typical properties of Ag@PAN were investigated by scanning electron microscopy (SEM), Fourier transforms infrared spectrometer and thermal gravimetric analyzer. The tribological properties were evaluated under different conditions. After the tribological test, the worn surface was analyzed by SEM and X-ray photoelectron spectroscopy to probe the lubrication mechanisms. Findings The prepared Ag@PAN could greatly improve the friction reduction and wear resistance of the friction pair under different conditions. The preferable tribological performances were mainly attributed to the synergism of various lubrication mechanisms including “mending effect,” “rolling effect” and lubricating protective film, and so on. Originality/value This study synthesizes a new kind of core-shell Ag@PAN as a lubricant additive, and it possesses preferable friction reduction and anti-wear abilities.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 635 ◽  
Author(s):  
Fang Han ◽  
Huaixing Wen ◽  
Jianjian Sun ◽  
Wei Wang ◽  
Yalong Fan ◽  
...  

This paper concerns a comparative study on the tribological properties of Si3N4-10 vol% hBN bearing on GCr15 steel under seawater lubrication and dry friction and fresh-water lubrication by using a pin-on-disc tribometer. The results showed that the lower friction coefficient (around 0.03) and wear rate (10−6 mm/Nm) of SN10/GCr15 tribopair were obtained under seawater condition. This might be caused by the comprehensive effects of hydrodynamics and boundary lubrication of surface films formed after the tribo-chemical reaction. Despite SN10/GCr15 tribopair having 0.07 friction coefficient in the pure-water environment, the wear mechanismsits were dominated by the adhesive wear and abrasive wear under the dry friction conditions, and delamination, plowing, and plastic deformation occured on the worn surface. The X-ray photoelectron spectroscopy analysis indicated that the products formed after tribo-chemaical reaction were Fe2O3, SiO2, and B2O3 and small amounts of salts from the seawater, and it was these deposits on the worn surface under seawater lubrication conditions that, served to lubricate and protect the wear surface.


2014 ◽  
Vol 658 ◽  
pp. 323-328 ◽  
Author(s):  
Filip Ilie ◽  
Cristina Covaliu ◽  
Georgiana Chisiu

Titanium dioxide (TiO2), belonging to the family of transition metal dichalcogenides (together with molybdenum disulfide (MoS2) and tungsten disulphide (WS2)), is well known for its solid lubricating behaviour. Thin films of TiO2 exhibit extremely low coefficient of friction in dry environments, and are typically applied by mixed in oil, grease or impregnated into porous matrix of powdered materials. Current researches in many areas imply the using of different types of nanoparticles in the composition of oily lubricants. Results of these researches upon the friction couples show that nanoparticles contained by lubricant can improve the tribological properties, the friction-wear reduction and the lubrication effect. When nanomaterials are used to improve lubrication effect, the selection of metal is very important. In this paper, the authors chose for investigating the tribological properties of two samples of TiO2 with the mean diameter of 15 nm (n-TiO2) and 250 nm (m-TiO2), under different friction conditions. The tribological properties of TiO2 nanoparticles mixed in the ecological lubricant oil were investigated using a four-ball tribometer and a block-on-ring tribometer and show the lowering of the friction coefficient in comparison to the lubricant base oil. The finally obtained lubricant is not considered toxic for the environment. The analyses of surface film composition, characterized with the help of X-ray photoelectron spectroscope (XPS) and scanning electron microscopy (SEM) images showed that the deposed nanoparticles form a protective film (TiO3) allowing for an increase in the load capacity of friction couple. XPS and SEM were used to examine the morphology of the wear track, after the four-ball experiment. The main advantage of the nanoparticles is ascribed to the release and furnishing of the nanoparticles from the valley onto the friction metal surface and their confinement at the interface. The TiO2 nanoparticles showed lower frictions coefficient and higher wear resistance as compared to the common TiO2 particles (about 1.5 μm in diameter(c- TiO2)) on a four-ball machine, which were caused by the microstructure of the protective film and serve as perfect intermediate lubricants between the contact surfaces.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Sooraj Singh Rawat ◽  
A. P. Harsha ◽  
O. P. Khatri ◽  
Rolf Wäsche

Abstract Pristine, reduced, and alkylated graphene oxides are applied as lubricating additives in paraffin grease. It has revealed that their crystalline structure governs the tribological properties of grease for steel tribo-pair. The microstructural analyses of grease samples showed that a loose fiber network of soap in the presence of graphene-based additive allows their facile release for efficient lubrication. The surface analyses based on the microscopic and elemental mapping show the development of a graphene-derived protective film on the worn scars, which protected the tribo-surfaces and subsided the wear. The reduced graphene oxide (rGO) with the interlamellar distance of 0.35 nm in the (002) plane provided minimum resistance to shear and exhibited maximum reduction in coefficient of friction (COF) for the paraffin grease. The presence of oxygen functionalities in the basal of pristine and alkylated graphene oxide (GO) compromised the interlamellar shearing under tribo-stress; consequently, higher COF than that of rGO.


Sign in / Sign up

Export Citation Format

Share Document