scholarly journals Fish Scales as a Biosorbent of Pollutants from Wastewaters and Natural Waters (a Literature Review)

2020 ◽  
Vol 10 (6) ◽  
pp. 6893-6905 ◽  

We have reviewed literature data on the use of various fish scales as a sorption material for extracting various pollutants (heavy metal ions, dyes, antibiotics) from waste and natural waters. The parameters of sorption interaction that ensure the greatest degree of pollutant removal are given in this paper. It is shown that the sorption capacity of fish scales can be increased by modifying various chemical reagents. The isotherms of pollutant adsorption with fish scales were found to be, in most cases, most adequately described by the Langmuir model, less often by the Freundlich model, and the pseudo-second second-order model most often describes the process kinetics.

Author(s):  
I.G. Shaikhiev ◽  
S.V. Sverguzova ◽  
K.I. Shaikhieva ◽  
A.V. Svyatchenko ◽  
N.A. Miroshnichenko

The literature data on the use of biomass and waste from the processing of melons (pumpkin, watermelon, melon, cucumber) as sorption materials for various pollutants removing from aquatic environments are summarized. It was determined that dried shells of melons and gourds are effective sorption materials for the extraction of heavy metal ions and dyes. The seeds of large fruits of melons (pumpkin, watermelon, melon), as well as their shells, also showed good sorption performance for heavy metal ions and dyes. It was revealed that most of the isotherms of the adsorption of pollutants on the processing of melons and gourds waste are most accurately described by the Langmuir model, less often by the Freundlich model, singularly by the Temkin or Dubinin-Radushkevich models. It is determined that the process kinetics in all cases follows the pseudo-second order model. To increase the adsorption characteristics of the components of melons and gourds for various pollutants, the materials were modified with various chemical reagents.


2021 ◽  
Vol 11 (5) ◽  
pp. 12689-12705

The paper summarizes data from literature sources using the waste of processing cucurbits (pumpkin, watermelon, melon, cucumber) as a sorption material to remove various pollutants from water environments. It states that cucurbits' shells are effective sorption materials for extracting heavy metal ions and dyes. Seeds of large cucurbits fruits (pumpkin, watermelon, melon) and seed shells also showed good sorption performance for heavy metal ions and dyes. It was found that most of the pollutants adsorption isotherms on cucurbits by-products are most accurately described by the Langmuir model, less often by the Freundlich model, and occasionally by the Tyomkin or Dubinin-Radushkevich models. It was determined that the adsorption process kinetics most often follows the pseudo-second-order model, less often – the logistic model. To increase the adsorption characteristics of cucurbits fruit components for various pollutants, they were modified with various chemical reagents.


2021 ◽  
Vol 19 (9) ◽  
pp. 46-54
Author(s):  
Makarim A. Mahdi ◽  
Aymen A.R. Jawad ◽  
Aseel M. Aljeboree ◽  
Layth S. Jasim ◽  
Ayad F. Alkaim

The AAc/GO nanocomposite hydrogel was successfully employed as a polymeric Nano sorbent of the removal efficiency of M G dye from the model. The complication of the mechanism of the adsorption system was completely exposed by examining how solution pH affects adsorption, Ionic strength isotherm models, kinetic models, and thermodynamics. The adsorption of the MG dye was greatly dependent on the solution pH. The Freundlich model has been demonstrated to be the most accurate in describing the MG dye sorption, whilst the Langmuir model was shown to be the least accurate. Additionally, these integrated mechanisms fit nicely within the framework of a pseudo-second-order model. Additionally, the contact time at equilibrium short (ten minutes) required to MG removes demonstrates the AAc/GO nanocomposite hydrogel can be considered an efficient and potentially useful adsorbent for MG removal from industrial effluents.


2011 ◽  
Vol 308-310 ◽  
pp. 178-181
Author(s):  
Xin Liang Liu ◽  
Li Jun Wang ◽  
Yong Li Chen ◽  
Nan Chen ◽  
Shuang Fei Wang

The bagasse fibers were activated by alkalize and etherified. 1,2-ethanediamine and carbon disulfide were used to modify the etherify fiber to get the chelate-fiber contained sulfur and nitrogen. The FTIR was used to characterize the xanthated aminating-fiber (XAF). The mechanism of sorption properties for heavy metal ions were studied. As the results shown, the optimal process to prepare the XAF was that the reaction time, concentration of NaOH and dosage of CS2 was 60min, 12% and 2mL, respectively. The chelate-fiber containing sulfur and nitrogen possessed high adsorption capacities for Cu(II) and the mechanism of sorption fitted the pseudo-second-order model well.


Author(s):  
I.G. Shaikhiev ◽  
T.K.T. Nguyen ◽  
R.Z. Galimova ◽  
V.O. Dryakhlov

The technology for wastewater treatment of galvanic production was developed for «Thien Mi» LLC, Vinh Fuk, Socialist Republic of Vietnam. Initially, a characteristic of the existing method for the extraction of heavy metal ions from electroplating is given. It was revealed that the treatment of wastewater from galvanic plants with a suspension of calcium hydroxide leads to the formation of a large volume of galvanic sludge and an insufficient degree of purification from heavy metal ions. The possibility of sorption purification of the galvanic drains of the named enterprise using the sawdust of acacia (Acacia auriculiformis) as a sorption material was investigated. The adsorption isotherms of Cu2+, Ni2+, and Zn2+ ions with native sawdust of acacia were constructed. Sorption material was processed with weakly concentrated solutions of sulfuric acid, which leads to an increase of more than 4 times in the sorption capacity of the mentioned ITMs. The post-treatment of galvanic solutions from heavy metal ions was carried out using the Lewatit Monoplus TP 207 ion-exchange resin. The toxicity of the initial galvanic drains was investigated after each cleaning step using standard test objects Paramecium caudatum and Daphia magna. As a result of the studies, sorption and ion-exchange methods are recommended for the treatment of wastewater of galvanic production of small volumes, which can significantly reduce the concentration of heavy metal ions in purified solutions.


2020 ◽  
Vol 82 (12) ◽  
pp. 3032-3046
Author(s):  
Ensar Oguz

Abstract Abies bornmulleriana cone was used to investigate its biosorption efficiency and capacity of Pb2+, Cu2+, Cd2+, Co2+, and Ni2+ heavy metal ions in a quinary system. The mechanism of multi-metal removal was illustrated in terms of FTIR results. Electrophoretic mobilities of the biosorbents were determined to access the information about the competitive biosorption. BET surface area and pore volume of the biosorbents before and after the biosorption were defined to be (5.05 m2 g−1 and 0.0018 cm3 g−1) and (0.97 m2 g−1 and 0.00032 cm3 g−1), respectively. The average pore width of the biosorbent before and after the biosorption was calculated as 9.34 and 13.04 Å, respectively. The pseudo-first-order model and the pseudo-second-order model were applied to analyze the experimental data. Experimental data have been evaluated according to the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. The maximum biosorption efficiency and capacity for Pb2+, Cu2+, Cd2+, Ni2+, and Co2+ ions were defined as (85.4, 56.4, 35.4, 21.7 and 18.9%) and (8.5, 5.6, 3.5, 2.2 and 1.9 mg g−1), respectively. The selectivity of heavy metal ions resulted in the magnitude order of Pb2+ > Cu2+ > Cd2+ > Ni2+ > Co2+.


2021 ◽  
Vol 316 ◽  
pp. 170-174
Author(s):  
Elena G. Filatova ◽  
Yury N. Pozhidaev

Adsorption isotherms of Ni (II) and Cu (II) ions by alumino-silicates, modified with N, N'-bis (3-triethoxysilylpropyl) thiocarbamide (BTM-3), and HCl, were obtained. The adsorption kinetics of heavy metal ions is studied, using the kinetic pseudo-first and pseudo-second order models. It is shown that, when alumino-silicates are modified, the rate and energy of adsorption increase. It is established that the kinetics of the adsorption of the studied ions is best described by a pseudo-second order model. The maximum value of the adsorption rate constant of 33.7∙10-5 g/ (mmol min) corresponds to nickel (II) ions for alumino-silicates, modified with HCl. The maximum value of the adsorption rate constant value of 2.91∙10-5 g/ (mmol min) for alumino-silicates, modified with BTM-3, corresponds to Cu (II) ions.


2021 ◽  
Author(s):  
Xue-Ting Wang ◽  
Xudong Deng ◽  
Tuo-Di Zhang ◽  
Xi Zhang ◽  
Wen-Pu Shi ◽  
...  

Abstract The problem of global water pollution is becoming more and more severe, among which organic dyes and heavy metal ions are two typical types of the most common pollutants. The adsorption method for water purification and wastewater treatment is widely studied and applied. Hydrogel has unique advantages in the field of adsorption due to its three-dimensional porous structure. In this paper, a new type of self-healing hydrogels based on reversible covalent bond were prepared by mixing poly(vinyl alcohol) (PVA) and 2-aminophenylboronic acid modified polyacrylic acid (PAA-2APBA). In addition, the introduction of laponite nanoparticles into the hydrogel can increase both the mechanical strength and adsorption efficiency. This low-cost PAA-2APBA/PVA/laponite nano-composite hydrogel could efficiently remove the organic dyes and heavy metal ions in model waste water through simple immersion, which makes it have application prospects in the fields of both biomedical and environmental engineering.


2017 ◽  
Vol 9 (4) ◽  
pp. 22 ◽  
Author(s):  
Morlu G. F. Stevens ◽  
Bareki S. Batlokwa

In this article, the physical and chemical properties of pulverized, vinegar treated waste from fish scale remains of fish from Lake Ngami in Sehitwa near Maun, Botswana, were investigated for a possibility of being employed as an environmentally friendly and cheap sorbent material for reducing or removing excess, toxic, heavy metal ions from wastewater before different uses. Lead (II) and Zinc (II) ions were selected as model ions to demonstrate the potential of fish scale waste remains in removing excess toxic heavy metal ions. The pulverized size of the waste was found to be 60 µm, with round and smooth morphology, which are excellent characteristics usually associated with superior sorbents. Furthermore, the fourier transform infrared spectrometer spectrum showed multiple functional groups such as amines, carboxylic, hydroxyl, and carbonyls which are well known to bond well with metals through hydrogen and oxygen bonding. The X-ray diffractogram of the fish scales showed the presence of hydroxyapatite, which has an excellent ion-exchange performance, which exchanges calcium ion site with metals. Multivariate methodologies statistical software, Minitab, were employed for the simultaneous optimization factors that affect sorption studies; initial ions concentration which was found to be 24.45 mg/L, the sorbents dose which was found to be 76.99 mg/L, contact time, which were found to be 62.37 min and solution pH 7.52. The fish scales waste also exhibited high percentage removal efficiencies toward Lead (II) and Zinc (II) removal from real wastewater samples at 81.97% and 80.37% with percentage relative standard deviation of 1.34% and 1.02% respectively.


2021 ◽  
pp. 39-54
Author(s):  
Il'dar Gil'manovich Shaikhiev ◽  
Karina Il'darovna Shaikhieva ◽  
Svetlana Vasil'yevna Sverguzova ◽  
Yuriy Alekseyevich Vinogradenko

A review of the literature data on the use of biomass components of apricot trees (Prunusarmeniaca) as a sorption material for the extraction of various pollutants from waste and natural waters is carried out. The parameters of the sorption interaction at which the highest degree of removal of pollutants is achieved are given. It has been shown that it is possible to increase the sorption capacity of apricot biomass components by modifying it with various chemical reagents. It has been determined that the most studied sorption material is the shell of apricot kernels. It is determined that the largest number of publications is devoted to the use of the latter as raw materials for the production of activated carbons. It was revealed that the surface area and the total pore volume of activated carbons from the kernels of apricot fruits depend on the modes of carbonization and activation of raw materials. It is shown that activated carbons are effective sorbents for removing various pollutants (metal ions, dyes, oil and oil products) from aqueous media. It was found that the adsorption isotherms of pollutants are most adequately described in most cases by the Langmuir and Freundlich models, and the kinetics of the process is most often described by the pseudo-second order model.


Sign in / Sign up

Export Citation Format

Share Document