Heating Value and Waste Gas Flow-Controlled Exhaust Gas Post-Combustion for a 150-Ton RH-TOP Degasser at Big River Steel

Author(s):  
J. Schlüter ◽  
J. Youngblood ◽  
M. Vachon ◽  
V. Wiegmann ◽  
H. Biehl
Keyword(s):  
Gas Flow ◽  
2014 ◽  
Vol 644-650 ◽  
pp. 485-488
Author(s):  
Li Jun Qiu ◽  
Su Ying Xu

In order to adapt to the needs of internal combustion engine speed variation of the turbocharger. Using waste gas regulator control exhaust gas inlet device. The effect of exhaust gas regulator is for adjusting the gas flow velocity and direction. When the internal combustion engine running at low speed raising the impeller speed. Exhaust gas regulator and axial moving blades rotating blades of two kinds of structure. The axial moving blade structure is changing the way nozzle ring opening work. Rotating blade structure is working on changing the way of blade Angle. Exhaust gas to adjust the turbocharger is a control of internal combustion engine air pressurization value of the speed changes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ping Fang ◽  
Zi-jun Tang ◽  
Xiong-bo Chen ◽  
Zhi-xiong Tang ◽  
Ding-sheng Chen ◽  
...  

A new paraffin/surfactant/water emulsion (PSW) for volatile organic compounds (VOCs) controlling was prepared and its potential for VOCs removal was investigated. Results indicated that PSW-5 (5%, v/v) provided higher toluene absorption efficiency (90.77%) than the other absorbents used. The saturation pressure, Henry’s constant, and activity coefficient of toluene in PSW-5 were significantly lower than those in water, and toluene solubility (1.331 g·L−1) in the PSW-5 was more than 2.5 times higher than the value in water. Several factors potentially affecting the toluene absorption efficiency were systematically investigated. The results suggested that concentration and pH of PSW, absorption temperature, and gas flow rate all had a strong influence on the toluene absorption, but the inlet concentration of toluene had little effect on the toluene absorption. There were different absorbing performances of PSW-5 on different VOCs, and the ketones, esters, and aromatics were more easily removed by the PSW-5 than the alkanes. Regeneration and reuse of the PSW were possible; after 3 runs of regeneration the absorption efficiency of PSW-5 for toluene also could reach 82.42%. So, the PSW is an economic, efficient, and safe absorbent and has a great prospect in organic waste gas treatment.


2008 ◽  
Vol 39-40 ◽  
pp. 641-646
Author(s):  
K. Gitzhofer

For boron containing glasses, you have to consider a gaseous fraction in the exhaust gas besides the particulate boron compounds. Within the framework of a research project finished in the year 2005 investigations into the emission of particulate and gaseous boron compounds were carried out on 18 glass melting furnaces with boron containing batch. The plants are different with regard to the molten glasses, furnace type, type of firing as well as downstream emission control technologies. The precipitation of particulate boron compounds is unproblematic. The precipitation of gaseous boron compounds is clearly more difficult and further measures have to be taken in respect of the effective precipitation. In a current follow up project, especially the reduction potential of gaseous boron compounds is investigated through the installation of a high temperature sorption stage (injection of fine-ground glass raw materials into the exhaust gas flow behind the superstructure at exhaust gas temperatures of 1400 °C) and/or the injection of alkaline solutions into the waste gas at lower temperatures. Investigations in the exhaust gas of E-glass melters were carried out successfully. Reduction rates of more than 95 % could be proved for gaseous boron compounds. The activities are supported by thermo-chemical calculations in the run up and during the measurements.


2021 ◽  
pp. 1-39
Author(s):  
Bibhuti B. Sahoo ◽  
Maryom Dabi ◽  
Ujjwal K. Saha

Abstract Exergy analysis of the reciprocating internal combustion (IC) engines is studied by estimating various input and output energy transfer parameters concerning a dead state reference. Exergy terms such as fuel input, work output, cooling, and exhaust gas are measured and are set into the exergy balance equation to determine the amount of loss or destruction. Exergy destructions are found in many forms such as combustion (entropy generation), cylinder wall, friction, mixing, blow-by, and others. These exergy terms have been estimated by considering various factors such as engine type, fuel type, environmental condition, and others. In this article, the different methods employed in estimating these exergy terms have been reviewed. It attempts to make a compendium of these evaluation methods and segregates them under individual exergy terms with necessary descriptions. The fuel input measurement is mostly based on Gibb's free energy and the lower heating value, whereas its higher heating value is used during the fuel exergy calculation on a molar basis. The work output of the engines is estimated either from the crankshaft or by analyzing the cylinder pressure and volume. The exergy transfer with cooling medium and exhaust gas depends on the temperature of gas. The maximum achievable engine performance is quantified by estimating the exergy efficiency. This piece of study will not only provide a plenty of information on exergy evaluation methods of IC engines but will also allow the future researchers to adopt the appropriate one.


1997 ◽  
Author(s):  
J Hardy ◽  
R Abston ◽  
J Hylton ◽  
T McKnight ◽  
R Joy ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 1061
Author(s):  
Kyeong-Ju Kong

Emission control devices such as selective catalytic reduction (SCR), exhaust gas recirculation (EGR), and scrubbers were installed in the compression ignition (CI) engine, and flow analysis of intake air and exhaust gas was required to predict the performance of the CI engine and emission control devices. In order to analyze such gas flow, it was inefficient to comprehensively analyze the engine’s cylinder and intake/exhaust systems because it takes a lot of computation time. Therefore, there is a need for a method that can quickly calculate the gas flow of the CI engine in order to shorten the development process of emission control devices. It can be efficient and quickly calculated if only the parts that require detailed observation among the intake/exhaust gas flow of the CI engine are analyzed in a 3D approach and the rest are analyzed in a 1D approach. In this study, an algorithm for gas flow analysis was developed by coupling 1D and 3D in the valve systems and comparing with experimental results for validation. Analyzing the intake/exhaust gas flow of the CI engine in a 3D approach took about 7 days for computation, but using the developed 1D–3D coupling algorithm, it could be computed within 30 min. Compared with the experimental results, the exhaust pipe pressure occurred an error within 1.80%, confirming the accuracy and it was possible to observe the detailed flow by showing the contour results for the part analyzed in the 3D zone. As a result, it was possible to accurately and quickly calculate the gas flow of the CI engine using the 1D–3D coupling algorithm applied to the valve system, and it was expected that it can be used to shorten the process for analyzing emission control devices, including predicting the performance of the CI engine.


JURNAL TEKNIK ◽  
2018 ◽  
Vol 12 (2) ◽  
pp. 85-96
Author(s):  
Elham Prasetyo Wibowo ◽  
Elvira Zondra ◽  
Usaha Situmeang

                                                                                                                                      ABSTRAK              Exhaust fan adalah peralatan berupa sudu-sudu yang berputar dan memanfaatkan gaya sentrifugal untuk membuang exhaust gas hasil pembakaran bahan bakar solar engine diesel pada saat dilakukan tes pembebanan penuh. Dengan exhaust fan, gas karbondioksida yang dihasilkan oleh engine diesel memungkinkan untuk dibuang dengan cepat sehingga tidak memenuhi ruangan dan membahayakan bagi setiap karyawan. Pengoperasian exhaust fan dilakukan sesuai jadwal pengetesan engine. Exhaust fan tersebut digerakkan oleh motor induksi 3 phasa 30 kW dengan putaran nominal secara konstan. Pada saat pengetesan engine dengan nilai aliran gas buang yang rendah, exhaust fan tetap dioperasikan dengan kecepatan nominal. Operasional motor exhaust fan dengan kecepatan konstan seperti ini akan mengakibatkan konsumsi daya listrik yang relatif tinggi dari pada motor dengan kecepatan berubah-ubah sesuai kebutuhan. Sebagai pertimbangan hasil perhitungan untuk engine C 18 Caterpillar kapasitas 831 hp yang sebelumya  membutuhkan operasional exhaust fan dengan daya 24,7927 kW nilai sama untuk semua model engine, setelah penggunaan VSD dapat dikurangi sebesar 14,35 %  menjadi 21,2343 kW saja. Penelitian ini bertujuan mendapatkan probabilitas hubungan antara konsumsi energi listrik, frekuensi pada variable speed drive, putaran motor induksi dan nilai aliran udara pada cerobong exhaust fan. Nilai aliran udara exhaust fan tersebut akan disesuaikan dengan nilai aliran gas pembakaran yang dihasilkan oleh engine. Analisa optimasi motor exhaust fan ini sedianya akan menggunakan Matematic Analysis dan simulasi menggunakan simulink matlab sehingga diharapkan ada solusi untuk melakukan penghematan terhadap konsumsi daya motor, kemudian bisa diterapkan dalam semua pengoperasian motor yang ada di perusahaan.   Kata kunci : variable speed drive, motor induksi, exhaust fan                                                                                                                                            ABSTRACT              The exhaust fan is a rotary blade device which produces centrifugal force to remove exhaust gas from diesel fuel combustion during a full load test. With exhaust fans, the carbondioxide gases that generated by the diesel engine allows to be disposed quickly so that it does not fill the room and harm to every employee. The operation of  exhaust fan is carried out according to the engine test schedule. The exhaust fan is driven by a 3 phase induction motor of  30 kW with constant rotation. When testing the engine with a low Exhaust Gas flow value, the exhaust fan remains operated at rated speed. Operational exhaust fan with a constant speed like this will result in relatively high power consumption of the motor with the speed of change as needed. Considering the calculation results for C 18 engine Caterpillar capacity of 831 hp which previously required operational exhaust fan with 24,7927 kW of equal value for all engine models, after the use of VSD can be reduced by 14.35% to 21.2343 kW only. This study aims to obtain the probability of relationship between electrical energy consumption, frequency on the variable speed drive, induction motor rotation and the value of air flow in the exhaust fan chimney. The value of the exhaust fan air flow will be adjusted to the combustion gas flow value generated by the engine. The optimization analysis of this motor exhaust fan will be using Matematic Analysis and simulation using matlab simulink so it is expected there is a solution to make savings to motor power consumption, then it can be applied in all the motor operation in the company.   Keywords: variable speed drive, induction motor, exhaust fan


2020 ◽  
Vol 10 (13) ◽  
pp. 4617
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

The influence of pressure on the gas/liquid interfacial area is investigated in the pressure range of 0.2–0.3 MPa by using a tray column test rig. A simulated waste gas, which consisted of 30% CO2 and 70% air, was used in this study. Distilled water was employed as an absorbent. The temperature of the inlet water was 19 °C. The inlet volumetric flow rate of water was 0.17 m3/h. Two series of experiments were performed; the first series was performed at inlet gas flow rate 15 Nm3/h, whereas the second series was at 20 Nm3/h of inlet gas flow rate. The results showed that the gas/liquid interfacial area decreases when the total pressure is increased. The effect of pressure on the gas/liquid interfacial area at high inlet volumetric gas flow rates is more significant than at low inlet volumetric gas flow rates. The authors studied the effect of decreasing the interfacial area on the performance of a tray column for CO2 capture.


2014 ◽  
Vol 989-994 ◽  
pp. 3456-3459
Author(s):  
Ri Sheng Long ◽  
Zi Sheng Lian ◽  
Shao Ni Sun ◽  
Qi Liang Wang

In order to improve the cooling & purifying effect of exhaust, reducing the water-jetting phenomenon during working time, the waste-gas flow field simulation in water-washing tank of Explosion-Proof Diesel (EPD) was conducted through ANSYSCFX/Fluent. The results revealed the inner flow condition and outlet temperature of emissions in water-washing tank. It provided a reference for the future design and optimization of the water-washing tank of EPD.


Perfusion ◽  
1993 ◽  
Vol 8 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Juha Aittomäki

The correlation between pCO2 values in blood and in exhaust gas from the oxygenators was examined during cardiopulmonary bypass (CPB) using one bubble oxygenator and three membrane oxygenators. Forty-seven CPBs were performed, 17 with Compactflow® (Dideco, ltaly), 10 with Maxima® (Medtronic Inc., USA), 10 with Cobe CML®(Cobe Laboratories, USA) membrane oxygenators and 10 with Hi-Flex® (Dideco, Italy) bubble oxygenators. Blood samples were taken both from arterial and venous lines of the oxygenator. A capnometer was connected to the oxygenator gas exhaust port and CO2 fraction was measured at the time of drawing blood samples. CO2 pressure in the gas phase was calculated from the product of the CO2 fraction and water vapour- corrected barometric pressure. Blood gases were measured at 37°C and the pCO2 value was corrected to the temperature of the arterial line. The correlation between blood and exhaust gas pCO2 was good in all the oxygenators examined, ranging from 0.921 to 0.976. The standard error of estimate (SEE) was in the range of about ± 2 mmHg for all the oxygenators. The systematic error (slope and intercept of the correlation line) varied depending on the construction of the oxygenator, with countercurrent design having the best overall correspondence. Based on the results of this study it can be concluded that arterial or venous CO 2 pressure can be monitored with a capnometry device coupled to the oxygenator gas outlet port. The use of a 'target FCO2 line' or a calculator program is proposed in order to aid the perfusionist in adjusting the oxygenator gas flow to attain normocarbia during CPB.


Sign in / Sign up

Export Citation Format

Share Document