Reduction of Gaseous Boron Compounds in the Waste Gas of Glass Melting Furnaces

2008 ◽  
Vol 39-40 ◽  
pp. 641-646
Author(s):  
K. Gitzhofer

For boron containing glasses, you have to consider a gaseous fraction in the exhaust gas besides the particulate boron compounds. Within the framework of a research project finished in the year 2005 investigations into the emission of particulate and gaseous boron compounds were carried out on 18 glass melting furnaces with boron containing batch. The plants are different with regard to the molten glasses, furnace type, type of firing as well as downstream emission control technologies. The precipitation of particulate boron compounds is unproblematic. The precipitation of gaseous boron compounds is clearly more difficult and further measures have to be taken in respect of the effective precipitation. In a current follow up project, especially the reduction potential of gaseous boron compounds is investigated through the installation of a high temperature sorption stage (injection of fine-ground glass raw materials into the exhaust gas flow behind the superstructure at exhaust gas temperatures of 1400 °C) and/or the injection of alkaline solutions into the waste gas at lower temperatures. Investigations in the exhaust gas of E-glass melters were carried out successfully. Reduction rates of more than 95 % could be proved for gaseous boron compounds. The activities are supported by thermo-chemical calculations in the run up and during the measurements.

2014 ◽  
Vol 644-650 ◽  
pp. 485-488
Author(s):  
Li Jun Qiu ◽  
Su Ying Xu

In order to adapt to the needs of internal combustion engine speed variation of the turbocharger. Using waste gas regulator control exhaust gas inlet device. The effect of exhaust gas regulator is for adjusting the gas flow velocity and direction. When the internal combustion engine running at low speed raising the impeller speed. Exhaust gas regulator and axial moving blades rotating blades of two kinds of structure. The axial moving blade structure is changing the way nozzle ring opening work. Rotating blade structure is working on changing the way of blade Angle. Exhaust gas to adjust the turbocharger is a control of internal combustion engine air pressurization value of the speed changes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ping Fang ◽  
Zi-jun Tang ◽  
Xiong-bo Chen ◽  
Zhi-xiong Tang ◽  
Ding-sheng Chen ◽  
...  

A new paraffin/surfactant/water emulsion (PSW) for volatile organic compounds (VOCs) controlling was prepared and its potential for VOCs removal was investigated. Results indicated that PSW-5 (5%, v/v) provided higher toluene absorption efficiency (90.77%) than the other absorbents used. The saturation pressure, Henry’s constant, and activity coefficient of toluene in PSW-5 were significantly lower than those in water, and toluene solubility (1.331 g·L−1) in the PSW-5 was more than 2.5 times higher than the value in water. Several factors potentially affecting the toluene absorption efficiency were systematically investigated. The results suggested that concentration and pH of PSW, absorption temperature, and gas flow rate all had a strong influence on the toluene absorption, but the inlet concentration of toluene had little effect on the toluene absorption. There were different absorbing performances of PSW-5 on different VOCs, and the ketones, esters, and aromatics were more easily removed by the PSW-5 than the alkanes. Regeneration and reuse of the PSW were possible; after 3 runs of regeneration the absorption efficiency of PSW-5 for toluene also could reach 82.42%. So, the PSW is an economic, efficient, and safe absorbent and has a great prospect in organic waste gas treatment.


2021 ◽  
Vol 236 ◽  
pp. 03027
Author(s):  
Yan Luo ◽  
Hubin Bai ◽  
Kaifang Wang ◽  
Xianbian Mao

The emission index of sulfur dioxide in the exhaust gas of the ceramic industry is an important indicator of the green production of enterprises and the green development of society. This article analyzes the emission sources of sulfur dioxide in the exhaust gas of the ceramic industry, and gives the calculation method for calculating the sulfur dioxide emissions in raw materials and fuels. At the same time, it compares the two-alkali wet desulfurization, limestone-gypsum wet desulfurization, and semi-dry desulfurization. The three governance measures provide references for ceramic companies to evaluate sulfur dioxide emissions and treatment.


2021 ◽  
Vol 5 (2) ◽  
pp. 16
Author(s):  
Isabel Padilla ◽  
Maximina Romero ◽  
José I. Robla ◽  
Aurora López-Delgado

In this work, concentrated solar energy (CSE) was applied to an energy-intensive process such as the vitrification of waste with the aim of manufacturing glasses. Different types of waste were used as raw materials: a hazardous waste from the aluminum industry as aluminum source; two residues from the food industry (eggshell and mussel shell) and dolomite ore as calcium source; quartz sand was also employed as glass network former. The use of CSE allowed obtaining glasses in the SiO2-Al2O3-CaO system at exposure time as short as 15 min. The raw materials, their mixtures, and the resulting glasses were characterized by means of X-ray fluorescence, X-ray diffraction, and differential thermal analysis. The feasibility of combining a renewable energy, as solar energy and different waste for the manufacture of glasses, would highly contribute to circular economy and environmental sustainability.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1260
Author(s):  
Stefanie Duvigneau ◽  
Robert Dürr ◽  
Jessica Behrens ◽  
Achim Kienle

Biopolymers are a promising alternative to petroleum-based plastic raw materials. They are bio-based, non-toxic and degradable under environmental conditions. In addition to the homopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad range of applications and are easier to process in comparison to PHB. The most prominent representative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this article, we show a new kinetic model that describes the PHBV production from fructose and propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The presented model is a valuable tool to improve the microbial PHBV production process. Due to the coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has the potential to predict the composition and the current yield of PHBV in the ongoing process.


1997 ◽  
Author(s):  
J Hardy ◽  
R Abston ◽  
J Hylton ◽  
T McKnight ◽  
R Joy ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 1061
Author(s):  
Kyeong-Ju Kong

Emission control devices such as selective catalytic reduction (SCR), exhaust gas recirculation (EGR), and scrubbers were installed in the compression ignition (CI) engine, and flow analysis of intake air and exhaust gas was required to predict the performance of the CI engine and emission control devices. In order to analyze such gas flow, it was inefficient to comprehensively analyze the engine’s cylinder and intake/exhaust systems because it takes a lot of computation time. Therefore, there is a need for a method that can quickly calculate the gas flow of the CI engine in order to shorten the development process of emission control devices. It can be efficient and quickly calculated if only the parts that require detailed observation among the intake/exhaust gas flow of the CI engine are analyzed in a 3D approach and the rest are analyzed in a 1D approach. In this study, an algorithm for gas flow analysis was developed by coupling 1D and 3D in the valve systems and comparing with experimental results for validation. Analyzing the intake/exhaust gas flow of the CI engine in a 3D approach took about 7 days for computation, but using the developed 1D–3D coupling algorithm, it could be computed within 30 min. Compared with the experimental results, the exhaust pipe pressure occurred an error within 1.80%, confirming the accuracy and it was possible to observe the detailed flow by showing the contour results for the part analyzed in the 3D zone. As a result, it was possible to accurately and quickly calculate the gas flow of the CI engine using the 1D–3D coupling algorithm applied to the valve system, and it was expected that it can be used to shorten the process for analyzing emission control devices, including predicting the performance of the CI engine.


JURNAL TEKNIK ◽  
2018 ◽  
Vol 12 (2) ◽  
pp. 85-96
Author(s):  
Elham Prasetyo Wibowo ◽  
Elvira Zondra ◽  
Usaha Situmeang

                                                                                                                                      ABSTRAK              Exhaust fan adalah peralatan berupa sudu-sudu yang berputar dan memanfaatkan gaya sentrifugal untuk membuang exhaust gas hasil pembakaran bahan bakar solar engine diesel pada saat dilakukan tes pembebanan penuh. Dengan exhaust fan, gas karbondioksida yang dihasilkan oleh engine diesel memungkinkan untuk dibuang dengan cepat sehingga tidak memenuhi ruangan dan membahayakan bagi setiap karyawan. Pengoperasian exhaust fan dilakukan sesuai jadwal pengetesan engine. Exhaust fan tersebut digerakkan oleh motor induksi 3 phasa 30 kW dengan putaran nominal secara konstan. Pada saat pengetesan engine dengan nilai aliran gas buang yang rendah, exhaust fan tetap dioperasikan dengan kecepatan nominal. Operasional motor exhaust fan dengan kecepatan konstan seperti ini akan mengakibatkan konsumsi daya listrik yang relatif tinggi dari pada motor dengan kecepatan berubah-ubah sesuai kebutuhan. Sebagai pertimbangan hasil perhitungan untuk engine C 18 Caterpillar kapasitas 831 hp yang sebelumya  membutuhkan operasional exhaust fan dengan daya 24,7927 kW nilai sama untuk semua model engine, setelah penggunaan VSD dapat dikurangi sebesar 14,35 %  menjadi 21,2343 kW saja. Penelitian ini bertujuan mendapatkan probabilitas hubungan antara konsumsi energi listrik, frekuensi pada variable speed drive, putaran motor induksi dan nilai aliran udara pada cerobong exhaust fan. Nilai aliran udara exhaust fan tersebut akan disesuaikan dengan nilai aliran gas pembakaran yang dihasilkan oleh engine. Analisa optimasi motor exhaust fan ini sedianya akan menggunakan Matematic Analysis dan simulasi menggunakan simulink matlab sehingga diharapkan ada solusi untuk melakukan penghematan terhadap konsumsi daya motor, kemudian bisa diterapkan dalam semua pengoperasian motor yang ada di perusahaan.   Kata kunci : variable speed drive, motor induksi, exhaust fan                                                                                                                                            ABSTRACT              The exhaust fan is a rotary blade device which produces centrifugal force to remove exhaust gas from diesel fuel combustion during a full load test. With exhaust fans, the carbondioxide gases that generated by the diesel engine allows to be disposed quickly so that it does not fill the room and harm to every employee. The operation of  exhaust fan is carried out according to the engine test schedule. The exhaust fan is driven by a 3 phase induction motor of  30 kW with constant rotation. When testing the engine with a low Exhaust Gas flow value, the exhaust fan remains operated at rated speed. Operational exhaust fan with a constant speed like this will result in relatively high power consumption of the motor with the speed of change as needed. Considering the calculation results for C 18 engine Caterpillar capacity of 831 hp which previously required operational exhaust fan with 24,7927 kW of equal value for all engine models, after the use of VSD can be reduced by 14.35% to 21.2343 kW only. This study aims to obtain the probability of relationship between electrical energy consumption, frequency on the variable speed drive, induction motor rotation and the value of air flow in the exhaust fan chimney. The value of the exhaust fan air flow will be adjusted to the combustion gas flow value generated by the engine. The optimization analysis of this motor exhaust fan will be using Matematic Analysis and simulation using matlab simulink so it is expected there is a solution to make savings to motor power consumption, then it can be applied in all the motor operation in the company.   Keywords: variable speed drive, induction motor, exhaust fan


2020 ◽  
Vol 10 (13) ◽  
pp. 4617
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

The influence of pressure on the gas/liquid interfacial area is investigated in the pressure range of 0.2–0.3 MPa by using a tray column test rig. A simulated waste gas, which consisted of 30% CO2 and 70% air, was used in this study. Distilled water was employed as an absorbent. The temperature of the inlet water was 19 °C. The inlet volumetric flow rate of water was 0.17 m3/h. Two series of experiments were performed; the first series was performed at inlet gas flow rate 15 Nm3/h, whereas the second series was at 20 Nm3/h of inlet gas flow rate. The results showed that the gas/liquid interfacial area decreases when the total pressure is increased. The effect of pressure on the gas/liquid interfacial area at high inlet volumetric gas flow rates is more significant than at low inlet volumetric gas flow rates. The authors studied the effect of decreasing the interfacial area on the performance of a tray column for CO2 capture.


Sign in / Sign up

Export Citation Format

Share Document