scholarly journals Stability evaluation of quail egg powder obtained by freeze-drying

2021 ◽  
Vol 10 (14) ◽  
pp. e184101420930
Author(s):  
Mariana Aparecida Nunes ◽  
Camila Alves Moreira ◽  
Lenilton Santos Soares ◽  
Marta Fernanda Zotarelli ◽  
Marieli de Lima

This study aimed to produce quail egg powder by freeze-drying and to evaluate its stability in different types of flexible packages (low-density polyethylene, polypropylene and pigmented polypropylene) in high relative humidity (approximately 81%) at 25 °C during 59 days. The packages were evaluated for water vapor permeability and freeze-dried egg was characterized as to bulk density and hygroscopicity (initial time), and moisture, water activity, pH and color (until the end of storage). GAB, BET and Peleg sorption isotherm models were adjusted to the experimental data to predict monolayer moisture content in the powdered eggs. The freeze-dried quail eggs presented a little oscillation in color coordinates, reduction in pH, and increase in moisture content and water activity during storage for all packages used. No evaluated packaging was sufficiently effective as a moisture barrier. GAB and BET models fitted better to the experimental data for the freeze-dried quail egg, and the estimated monolayer moisture values were 0.0333 and 0.0227 g H2O/g solids, respectively. The powdered quail egg has industrial potential, however, it is susceptible to significant changes throughout storage when exposed to high relative humidity and conditioned in the tested packages. Commercially, as this product can be sold in regions with different temperatures and relative humidity, it is essential to consider the use of preservatives or anti-wetting agents.

2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Wanida Pan-utai ◽  
Siriluck Iamtham

Research background. C-phycocyanin (C-PC) as a water-soluble blue pigment was extracted from microalga Arthrospira. C-PC could be a good substitute for synthetic pigments with high antioxidant activity. However, C-PC is unstable due to sensitivity to temperature, light, pH, and oxygen; therefore applications of C-PC in food and other products are limited. Microencapsulation of C-PC using freeze-drying is a solution to this problem and is considered a suitable method for drying heat-sensitive pigment. Experimental approach. C-phycocyanin was extracted from Arthrospira platensis. C-phycocyanin microcapsules were modified by freeze-drying, with different ratios at 0-100 % of maltodextrin (MD) and gum Arabic (GA) used as microencapsulation wall materials. The powders produced were evaluated for physical properties including moisture content and water activity, solubility, hygroscopicity, bulk density, colour appearance, particle morphology and size distribution. Thermal stability and antioxidant activity of freeze-dried C-PC microencapsulated powders were also assessed. Results and conclusions. Freeze-dried C-PC microencapsulated powders with maltodextrin and gum Arabic as wall materials gave high encapsulation efficiency of around 99 %. At higher gum Arabic percentage, moisture content decreased and water activity improved. Maltodextrin gave higher solubility of C-PC powders whereas gum Arabic led to a similar colour of C-PC without microencapsulation. Freeze-dried C-PC microencapsulated powders were composed of different sized microparticles regardless of the combination of wall materials with amorphous glassy shapes. Thermal stability of encapsulated C-PC increased and also showed high antioxidant properties. Novelty and scientific contribution. C-PC microcapsules that maintain colourant stability with high antioxidant levels and resistance to high temperatures can be applied in a wide variety of products and also in the food industry.


2019 ◽  
Vol 11 (9) ◽  
pp. 11
Author(s):  
Semirames do N. Silva ◽  
Francisco de Assis C. Almeida ◽  
Josivanda P. Gomes ◽  
Antônio Jackson R. Barroso ◽  
Polyana B. Silva ◽  
...  

To apply low temperatures, different of other processes, maintain the structure of products and better preserve the thermosensitive components, the freeze-drying has called attention of various researchers. Aimed with the research to produce and characterize the powder in natura obtained by seeds of moringa, elaborate different pastes with addiction of 20, 30, 40 and 50 mL of distilled water, freeze-dry it, characterize it physical and physicochemical and select the best powder. The freeze-drying was produced through a benchtop freeze dryer. After drying it, from the powder were determined the real density, bulk density, compacted density, porosity, compressibility index, Hausner factor, hygroscopicity, solubility, color, moisture content and water activity, ashes, total acidity, pH, proteins, lipids and carbohydrates. The in natura powder was classified as non-hygroscopic, high solubility in water, low moisture content and water activity, high protein, lipids, carbohydrates and low acidity. Freeze-drying was presented as an appropriate method for the preservation of moringa constituents, with a formula selected with the addition of 50 mL of water.


Author(s):  
MILTON CANO-CHAUCA ◽  
AFONSO M. RAMOS ◽  
PAULO C. STRINGHETA ◽  
JOSÉ ANTONIO MARQUES ◽  
POLLYANNA IBRAHIM SILVA

Curvas de secagem de banana passa foram determinadas, utilizando-se três temperaturas do ar de secagem. Os resultados indicaram que para reduzir o teor de umidade do produto até 23,5% foram necessários tempos de secagem de 51, 36 e 30 horas paras as temperaturas de 50, 60 e 70ºC, respectivamente. O modelo exponencial U/Uo = exp(-kt) foi ajustado para os dados experimentais mediante análise de regressão não-linear, encontrandose alto coeficiente de regressão linear. Determinou-se a atividade de água do produto ao longo do processo de secagem para as três temperaturas testadas. Estudou-se a correlação entre a atividade de água e o teor de umidade do produto, determinando-se as isotermas de dessorção da banana passa a 25ºC. Observou-se que a atividade de água diminuiu em função do tempo de secagem e do teor de umidade para as três temperaturas de secagem. Os dados experimentais foram ajustados mediante regressão não-linear ao modelo polinomial e a seguinte equação foi obtida: U = -1844,93 + 7293,53Aa – 9515,52Aa2 + 4157,196Aa3. O ajuste mostrou-se satisfatório (R2 > 0,90). DRYING CURVES AND WATER ACTIVITY EVALUATION OF THE BANANA-PASSES Abstract Banana drying curves were determined by utilizing three drying air temperatures. The results indicated that to reduce the moisture content of the product until 23.5% it were necessary drying times of 51, 36 and 30 hours for temperatures of 50, 60 and 70ºC, respectively. The exponential model U/Uo = exp(-kt) was adjusted for the experimental data by means of non linear regression analysis, and a high coefficient of linear regression was found. The water activity of the product was determined throughout the drying process for the three tested temperatures. The correlation between the water activity and moisture content of the product was studied, and the sorption isotherms were determined at 25º C. It was observed that the water activity decreased in function to the drying time and moisture content for the three drying temperatures. The experimental data were adjusted by means of non linear regression to the polynomial model and the following equation was obtained: U = - 1844.93 + 7293.53A a – 9515.52 Aa 2 + 4157.196A a 3. The final adjust was satisfactory (R2 > 0.90).


Author(s):  
Niladri Chakraborty ◽  
Rajat Chakraborty ◽  
Asit Kumar Saha

Abstract Kiwi fruit (Actinidia deliciosa) (KF) is one of the best fruits available due to its large amount of nutrients. Despite its many health benefits, there are no previous reports on its preparation in other readily ingestible forms. The objective of the present study was to make a new food product from KF. The KF pulp was fortified and blended with several raw materials (such as rice flour and oat flour) using a stepwise short time addition and mixing methodology since this avoids unwanted biochemical and chemical reactions. The blended and reduced moisture KF paste was freeze-dried on a round silver coated steel plate (RSCSP), supplying the heat of sublimation using a newly designed cubic heater. The freeze-drying (FD) time was 4.5 h and the drying kinetics were studied using four established models. The effective moisture diffusivity (Deff) during FD (at 50 °C) was 1.532 x 10-6 m2/s and the activation energy (E) estimated for the FD was 28.35 kJ/mol. The freeze-dried sample was ground and placed under vacuum to reduce the weathering effects. The quality of the stored product was evaluated using the proximate analysis, physicochemical analysis and a sensory evaluation using a hedonic scale. The raw, fresh KF had a moisture content of 85.07% and the final freeze-dried product one of 3%. The carbohydrate, total sugar, protein, fat, total ash, crude fibre and vitamin C contents of the final product increased by 563%, 400%, 355%, 386%, 672%, 106%, and 117% respectively. Of the 66 panelists, the % consumer acceptances for the different attributes were: sweetness (68.18%), sourness (90.91%), saltiness (100%), bitterness (100%), flavour (95.45%), texture (77.27%) and overall acceptability (81.82%). Using conventional freeze-drying (CFD) for blended KF pulp without fortification, with the same RSCSP and the same cubic heater for sublimation, the drying time was found to be 7 h to reach the same final moisture content of 3%.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Matthew A. Achaglinkame ◽  
Eric Owusu-Mensah ◽  
Abena A. Boakye ◽  
Ibok Oduro

Snails, a delicacy in most tropical communities, are highly perishable and seasonal. Employed preservative methods are highly temperature dependent, adversely affecting their nutritional value and sensory properties. This study was aimed at determining the effect of size and drying time on the rehydration and sensory properties of freeze-dried snails. Snails were sized into three categories with average weights: 7.59 g (quarter-sized), 14.41 g (half-sized), and 30.71 g (whole), and freeze-dried for 15, 20, and 25 h. The moisture content and percent rehydration of the dried samples were determined by standard methods and sensory properties assessed by an in-house panel of 30 using a 5-point hedonic scale. The moisture content of the fresh and freeze-dried samples ranged from 65.80 to 75.20% and 3.25 to 10.24%, respectively. Freeze-dried samples had higher percent rehydration (27 to 102%) than the control; smoked snails (21 to 32%). Size had a significant (P<0.05) effect on the rehydration ability of the samples with the half-sized and freeze-dried for 15 h samples having the highest. The freeze-dried samples generally had higher consumer preference than the control in all attributes assessed. The findings show that freeze-drying snails (approximate weight of 14.4 g) for 15 h could be a consumer-preferred alternative preservative method for extending the shelf life of snails.


2018 ◽  
Vol 192 ◽  
pp. 03023
Author(s):  
Natthacha Chaloeichitratham ◽  
Pornkanya Mawilai ◽  
Thadchapong Pongsuttiyakorn ◽  
Pimpen Pornchalermpong

In this study, the effects of two drying methods: hot-air and freeze drying for Thai green curry paste in a terms of drying time and qualities have been investigated. The hot-air drying was carried out in tray dryer at temperature of 50, 60 and 70 °C. The freeze drying was carried out in freeze dryer at freezing temperature of -20°C, primary drying temperature of -10°C and secondary drying temperature of 50°C. Moisture content, water activity, colour, bulk density, and total phenolic content (TPC) were determined in samples. Freeze dried sample had significantly (p<0.05) lower moisture content, water activity, bulk density, total colour difference and browning index than hot air dried samples. For antioxidant activity, the results showed hot-air drying at 70°C effected highest TPC similar to freeze drying.


Separations ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 8 ◽  
Author(s):  
Anh V. Le ◽  
Sophie E. Parks ◽  
Minh H. Nguyen ◽  
Paul D. Roach

The seeds of the Gac fruit, Momordica cochinchinensis Spreng, are rich in trypsin inhibitors (TIs) but their optimal extraction and the effects of freeze drying are not established. This study aims to (1) compare aqueous solvents (DI water, 0.1 M NaCl, 0.02 M NaOH and ACN)/water/FA, 25:24:1) for extracting TIs from defatted Gac seed kernel powder, (2) to optimise the extraction in terms of solvent, time and material to solvent ratio and (3) to produce a TI-enriched freeze-dried powder (FD-TIP) with good characteristics. Based on the specific TI activity (TIA), the optimal extraction was 1 h using a ratio of 2.0 g of defatted powder in 30 mL of 0.05 M NaCl. The optimisation improved the TIA and specific TIA by 8% and 13%, respectively. The FD-TIP had a high specific TIA (1.57 ± 0.17 mg trypsin/mg protein), although it also contained saponins (43.6 ± 2.3 mg AE/g) and phenolics (10.5 ± 0.3 mg GAE/g). The FD-TIP was likely stable during storage due to its very low moisture content (0.43 ± 0.08%) and water activity (0.18 ± 0.07) and its ability to be easily reconstituted in water due to its high solubility index (92.4 ± 1.5%). Therefore, the optimal conditions for the extraction of TIs from defatted Gac seed kernel powder followed by freeze drying gave a high quality powder in terms of its highly specific TIA and physical properties.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 127 ◽  
Author(s):  
Alicia Conde-Islas ◽  
Maribel Jiménez-Fernández ◽  
Denis Cantú-Lozano ◽  
Galo Urrea-García ◽  
Guadalupe Luna-Solano

The purpose of this study was to investigate how the properties of Mexican kefir grains (MKG) are affected by the operating parameters used in the freeze-drying process. The factors investigated were the freezing time (3–9 h), freezing temperature (−20 to −80 °C), pressure (0.2–0.8 mbar), and lyophilization time (5–20 h). The maximum range of change and one-way analysis of variance showed that lyophilization time and freezing time significant affects (p < 0.05) the response variables, residual moisture content and water activity, and pressure had a significant effect on the color difference and survival rate of probiotic microorganisms. The best drying conditions were a freezing time of 3 h, a freezing temperature of −20 °C, a pressure of 0.6 mbar, and a lyophilization time of 15 h. Under these conditions, we obtained a product with residual moisture content below 6%, water activity below 0.2, and survival rates above 8.5 log cfu per gram of lactic acid bacteria and above 8.6 log for yeast.


2007 ◽  
Vol 13 (3) ◽  
pp. 231-238 ◽  
Author(s):  
P.C. Corrêa ◽  
A.L.D. Goneli ◽  
C. Jaren ◽  
D.M. Ribeiro ◽  
O. Resende

This study was carried out to evaluate the sorption isotherms of peanut pods, kernels and hulls for several temperature and humidity conditions and to fit different mathematical models to the experimental data, selecting the one best fitting the phenomenon. The dynamic method was applied to obtain the hygroscopic equilibrium moisture content. The environmental conditions were provided by means of an atmospheric conditioning unit, in which removable perforated trays were placed to allow air to pass through peanut mass, each one containing 50 g of the product. The mathematical models frequently used for the representation of hygroscopicity of agricultural products were fit to the experimental data. Based on those results, it was concluded that peanut pods, kernels and hulls presented differentiated hygroscopicity. The equilibrium moisture content for peanut pods, kernels and hulls increased with an increase in the relative humidity at any particular temperature and decreased with increase in temperature at constant relative humidity. At a constant water activity, peanut hulls samples had higher equilibrium moisture content than the pods and kernels samples. Based on statistical parameters, the modified Henderson and Chung-Pfost models were found to adequately describe the sorption characteristics of peanut pods, kernels and hulls. Isosteric heat of desorption were evaluated by applying the Clausius—Clapeyron equation to experimental isotherms and decreased with increasing moisture content. The peanut hulls had higher isosteric heat of sorption than that peanut pods and kernels.


Food Research ◽  
2021 ◽  
Vol 5 (S2) ◽  
pp. 98-106
Author(s):  
S. Darniadi ◽  
D.D. Handoko ◽  
S. Sunarmani ◽  
S. Widowati

Durian is a unique tropical fruit that has a strong smell and distinctive taste. It is a seasonal fruit and has a few days shelf-life. Freeze drying is known for preserving foods while maintaining its original shape and provide excellent rehydrated products. This study aimed to determine the shelf-life of freeze-dried (FD) durian products using the accelerated shelf-life testing (ASLT) method and to assess the flavour changes in fresh and freeze-dried durian products. The parameters used to determine shelf-life were moisture content and L* a* b* colour values of FD durian products for 28 days of storage at 30, 40, and 50oC. Flavour analysis using Solid Phase Microextraction (SPME) and Gas Chromatography-Mass Spectrometry (GCMS) was carried out on fresh durian pulp, FD durian for 30 hrs, and FD durian for 36 hrs. The estimation of shelf-life of FD durian products at storage temperatures of 25 and 30oC, respectively, were based on the following parameters: (1) moisture content: 41 and 37 days, (2) L*(brightness): 467 and 311 days, (3) a* (redness): 144 and 171 days, and (4) b*(yellowness): 43 and 46 days. A total of twenty-four volatile compounds contributed to the flavour of fresh durian fruit and five of them had concentrations of more than 10 ppm. The losses percentage of these five volatile compounds were in a range of 78-95% (FD durian for 30 hrs) and a range of 0- 100% (FD durian for 36 hrs). Freeze-drying technique on durian was able to extend shelflife and preserve flavour compounds.


Sign in / Sign up

Export Citation Format

Share Document