scholarly journals Dynamic Role of the Correlation Effect Revealed in the Exceptionally Slow Autodetachment Rates of the Vibrational Feshbach Resonances in the Dipole-Bound State

Author(s):  
Do Hyung Kang ◽  
Jinwoo Kim ◽  
Sang Kyu Kim

Real-time autodetachment dynamics of the loosely-bound excess electron from the vibrational Feshbach resonances of the dipole-bound states (DBS) of 4-bromophonoxide (4-BrPhO-) and 4-chlorophenoxide (4-ClPhO-) anions have been thoroughly investigated. The state-specific autodetachment rate measurements obtained by the picosecond time-resolved pump-probe method on the cryogenically cooled anions, exhibit the exceptionally long lifetime (τ) of ~ 2.5  0.6 ns (as the upper bound) for the 11’1 vibrational mode of the 4-BrPhO- DBS. Strong mode-dependency in the wide dynamic range has also been found, giving τ ~ 5.3 ps for the 10’1 mode, for instance. Though it is nontrivial to get the state-specific rates for the 4-ClPhO- DBS, the average autodetachment lifetime of the 19’120’1/11’1 mode has been estimated to be ~ 548  108 ps. Observation of these exceptionally slow autodetachment rates of vibrational Feshbach resonances strongly indicates that the ‘correlation effect’ may play a significant role in the DBS photodetachment dynamics. The Fermi’s golden rule has been invoked so that the correlation effect is taken into account in the form of the interaction between the charge and the induced dipole where the latter is given by the polarizable counterparts of the electron-rich halogenated compound and the diffuse non-valence electron. This report suggests that one may measure, from the real-time autodetachment dynamics, the extent of the correlation effect contribution to the stabilization and/or dynamics of the excess non-valence electron among many different types of the long-range interactions of the DBS.

Author(s):  
XD Dongfang

The quantum model of valence electron generation orbital penetration of alkali metal elements with unique stable structure is investigated. The electric field outside the atomic kernel is usually expressed by the Coulomb field of the point charge mode, and the composite electric field in atomic kernel can be equivalent to the electric field inside the sphere with uniform charge distribution or other electric fields without divergence point. The exact solutions of two Schrödinger equations for the bound state of the Coulomb field outside the atom and the binding state of the equivalent field inside the atom determine two different quantization energy formulas respectively. Here we show that the atomic kernel surface is the only common zero potential surface that can be selected. When the orbital penetration occurs, the law of conservation of energy requires that the energy level formulas of the two bound states must have corresponding quantum numbers to make them equal. As a result, there is no solution to the quantum number equation, indicating that the two quantum states of the valence electron are incompatible. This irreconcilable contradiction shows that the quantized energy of quantum mechanics cannot absolutely satisfy the law of conservation of energy.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1169
Author(s):  
Juan Bógalo ◽  
Pilar Poncela ◽  
Eva Senra

Real-time monitoring of the economy is based on activity indicators that show regular patterns such as trends, seasonality and business cycles. However, parametric and non-parametric methods for signal extraction produce revisions at the end of the sample, and the arrival of new data makes it difficult to assess the state of the economy. In this paper, we compare two signal extraction procedures: Circulant Singular Spectral Analysis, CiSSA, a non-parametric technique in which we can extract components associated with desired frequencies, and a parametric method based on ARIMA modelling. Through a set of simulations, we show that the magnitude of the revisions produced by CiSSA converges to zero quicker, and it is smaller than that of the alternative procedure.


2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Lvyang Ye ◽  
Yikang Yang ◽  
Xiaolun Jing ◽  
Jiangang Ma ◽  
Lingyu Deng ◽  
...  

With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2005 ◽  
Vol 14 (06) ◽  
pp. 931-947 ◽  
Author(s):  
F. PILOTTO ◽  
M. DILLIG

We investigate the influence of retardation effects on covariant 3-dimensional wave functions for bound hadrons. Within a quark-(scalar) diquark representation of a baryon, the four-dimensional Bethe–Salpeter equation is solved for a 1-rank separable kernel which simulates Coulombic attraction and confinement. We project the manifestly covariant bound state wave function into three dimensions upon integrating out the non-static energy dependence and compare it with solutions of three-dimensional quasi-potential equations obtained from different kinematical projections on the relative energy variable. We find that for long-range interactions, as characteristic in QCD, retardation effects in bound states are of crucial importance.


2015 ◽  
Vol 738-739 ◽  
pp. 1105-1110 ◽  
Author(s):  
Yuan Qing Qin ◽  
Ying Jie Cheng ◽  
Chun Jie Zhou

This paper mainly surveys the state-of-the-art on real-time communicaton in industrial wireless local networks(WLANs), and also identifys the suitable approaches to deal with the real-time requirements in future. Firstly, this paper summarizes the features of industrial WLANs and the challenges it encounters. Then according to the real-time problems of industrial WLAN, the fundamental mechanism of each recent representative resolution is analyzed in detail. Meanwhile, the characteristics and performance of these resolutions are adequately compared. Finally, this paper concludes the current of the research and discusses the future development of industrial WLANs.


1992 ◽  
Vol 07 (09) ◽  
pp. 1935-1951 ◽  
Author(s):  
G.A. KOZLOV

A systematic discussion of the probability of eta and KL bound-state decays—[Formula: see text] and [Formula: see text](l=e, μ)—within a three-dimensional reduction to the two-body quantum field theory is presented. The bound-state vertex function depends on the relative momentum of constituent-like particles. A structure-transition form factor is defined by a confinement-type quark-antiquark wave function. The phenomenology of this kind of decays is analyzed.


2020 ◽  
Vol 20 (2020) ◽  
pp. 213-214
Author(s):  
Maria de Fátima Rosolem ◽  
Vinicius Zimmermann Silva ◽  
Raul Beck ◽  
Aghatta Cioquetta Moreira ◽  
Sandra Maria Campanholi Tome ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3634 ◽  
Author(s):  
Srijit Nair ◽  
Juan Gomez-Cruz ◽  
Ángel Manjarrez-Hernandez ◽  
Gabriel Ascanio ◽  
Ribal Sabat ◽  
...  

Urinary tract infections (UTIs) are one of the major burdens on public healthcare worldwide. One of the primary causes of UTIs is the invasion of the urinary tract by uropathogenic Escherichia coli (UPEC). Improper treatment of bacterial infections like UTIs with broad-spectrum antibiotics has contributed to the rise of antimicrobial resistance, necessitating the development of an inexpensive, rapid and accurate detection of UPEC. Here, we present real-time, selective and label-free detection of UPEC using crossed surface-relief gratings (CSRGs) as nanometallic sensors incorporated into an optical sensing platform. CSRGs enable real-time sensing due to their unique surface plasmon resonance (SPR)-based light energy exchange, resulting in detection of a very-narrow-bandwidth SPR signal after the elimination of residual incident light. The platform’s sensing ability is experimentally demonstrated by the detection of bulk refractive index (RI) changes, with a bulk sensitivity of 382.2 nm/RIU and a resolution in the order of 10−6 RIU. We also demonstrate, for the first time, CSRG-based real-time selective capture and detection of UPEC in phosphate-buffered saline (PBS) solution, in clinically relevant concentrations, as opposed to other UTI-causing Gram-negative bacteria. The platform’s detection limit is calculated to be 105 CFU/mL (concentration on par with the clinical threshold for UTI diagnosis), with a dynamic range spanning four orders of magnitude. This work paves the way for the development of inexpensive point-of-care diagnosis devices focusing on effective treatment of UTIs, which are a burden on public healthcare due to the rise in the number of cases and their recurrences in the recent past.


Sign in / Sign up

Export Citation Format

Share Document