scholarly journals Evaluation of existing DCS1800 and U2100 Indoor Base Station Networks in Multi-storey Buildings in Malang City

2017 ◽  
Vol 5 (2) ◽  
pp. 9-14
Author(s):  
Muhammad Rizal Azizul Hakim

This study aims to determine the Rx Level value on each floor in the building and determine the omniceiling antenna coverage. Calculation of coverage using the Free Space Loss (FSL) method and measurement with a walk test. Calculation of coverage with the DCS1800 and U2100 networks uses the FSL method to determine the coverage distance per omni ceiling antenna. The result is the farthest distance is 24 meters and the closest distance is 4 meters and the average distance per omni ceiling antenna is 8 meters. As for the results of the walk test on the DCS1800 network, very good results were obtained for the Rx Level value on all floors in the building and for the U2100 network, the results were not good for the Rx Level value on all floors in the building, so it was necessary to evaluate at several points. antenna to improve the quality of the indoor network becomes feasible. In the results of the walk test on the DCS1800 network and the U2100 network, there are several areas in the building that experience bad Rx Level values ??due to poor transmission power so it is necessary to add 1 antenna sector.

Author(s):  
Andres Valencia Acuña ◽  
◽  
Brian Meneses Claudio ◽  
Alexi Delgado

In recent years being able to have access to the internet has become a tool not only to be able to communicate in the distance but it is a great tool to be able to feed knowledge, it is because of them that children have a great educational utility and after this pandemic in Peru it was necessary to close schools, to be able to give remote classes or virtual classes. To solve the problem, we propose to be able to design a network of radio links whereby means of a base station of emission and reception, with an antenna of sectorial type and directional antennas to be able to realize a Point – Multipoint link which will be able to manage the quality of signal by means of a routing with functions of control of speeds for each connection of each home. It was the result that the connections of the radio link at an average distance from the coverage that the network had the signal was better and that the connections that were very far or close to the coverage area had complications, but despite this the connections were sufficient to be able to maintain the virtual classes that is what was planned. It is recommended that for a better connection and complete coverage it would be to reinforce the broadcast base with more sectoral antennas in the network. Keywords- Radio link, Point - Multipoint, Router, Download speed, Upload speed.


Author(s):  
V. Lyandres

Introduction:Effective synthesis of а mobile communication network includes joint optimisation of two processes: placement of base stations and frequency assignment. In real environments, the well-known cellular concept fails due to some reasons, such as not homogeneous traffic and non-isotropic wave propagation in the service area.Purpose:Looking for the universal method of finding a network structure close to the optimal.Results:The proposed approach is based on the idea of adaptive vector quantization of the network service area. As a result, it is reduced to a 2D discrete map split into zones with approximately equal number of service requests. In each zone, the algorithm finds such coordinates of its base station that provide the shortest average distance to all subscribers. This method takes into account the shortage of the a priory information about the current traffic, ensures maximum coverage of the service area, and what is not less important, significantly simplifies the process of frequency assignment.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammed Obaid ◽  
Qianwei Zhang ◽  
Scott J. Adams ◽  
Reza Fotouhi ◽  
Haron Obaid

Abstract Background Telesonography systems have been developed to overcome barriers to accessing diagnostic ultrasound for patients in rural and remote communities. However, most previous telesonography systems have been designed for performing only abdominal and obstetrical exams. In this paper, we describe the development and assessment of a musculoskeletal (MSK) telesonography system. Methods We developed a 4-degrees-of-freedom (DOF) robot to manipulate an ultrasound probe. The robot was remotely controlled by a radiologist operating a joystick at the master site. The telesonography system was used to scan participants’ forearms, and all participants were conventionally scanned for comparison. Participants and radiologists were surveyed regarding their experience. Images from both scanning methods were independently assessed by an MSK radiologist. Results All ten ultrasound exams were successfully performed using our developed MSK telesonography system, with no significant delay in movement. The duration (mean ± standard deviation) of telerobotic and conventional exams was 4.6 ± 0.9 and 1.4 ± 0.5 min, respectively (p = 0.039). An MSK radiologist rated quality of real-time ultrasound images transmitted over an internet connection as “very good” for all telesonography exams, and participants rated communication with the radiologist as “very good” or “good” for all exams. Visualisation of anatomic structures was similar between telerobotic and conventional methods, with no statistically significant differences. Conclusions The MSK telesonography system developed in this study is feasible for performing soft tissue ultrasound exams. The advancement of this system may allow MSK ultrasound exams to be performed over long distances, increasing access to ultrasound for patients in rural and remote communities.


Medicina ◽  
2021 ◽  
Vol 57 (7) ◽  
pp. 713
Author(s):  
Cristiano Sconza ◽  
Francesco Negrini ◽  
Berardo Di Matteo ◽  
Alberto Borboni ◽  
Gennaro Boccia ◽  
...  

Background and Objectives: Gait disorders represent one of the most disabling aspects in multiple sclerosis (MS) that strongly influence patient quality of life. The improvement of walking ability is a primary goal for rehabilitation treatment. The aim of this study is to evaluate the effectiveness of robot-assisted gait training (RAGT) in association with physiotherapy treatment in patients affected by MS in comparison with ground conventional gait training. Study design: Randomized controlled crossover trial. Materials and Methods: Twenty-seven participants affected by MS with EDSS scores between 3.5 and 7 were enrolled, of whom seventeen completed the study. They received five training sessions per week over five weeks of conventional gait training with (experimental group) or without (control group) the inclusion of RAGT. The patients were prospectively evaluated before and after the first treatment session and, after the crossover phase, before and after the second treatment session. The evaluation was based on the 25-foot walk test (25FW, main outcome), 6 min walk test (6MWT), Tinetti Test, Modified Ashworth Scale, and modified Motricity Index for lower limbs. We also measured disability parameters using Functional Independence Measure and Quality of Life Index, and instrumental kinematic and gait parameters: knee extensor strength, double-time support, step length ratio; 17 patients reached the final evaluation. Results: Both groups significantly improved on gait parameters, motor abilities, and autonomy recovery in daily living activities with generally better results of RAGT over control treatment. In particular, the RAGT group improved more than control group in the 25FW (p = 0.004) and the 6MWT (p = 0.022). Conclusions: RAGT is a valid treatment option that in association with physiotherapy could induce positive effects in MS-correlated gait disorders. Our results showed greater effectiveness in recovering gait speed and resistance than conventional gait training.


2021 ◽  
Vol 10 (7) ◽  
pp. 426
Author(s):  
Tingting Lan ◽  
Danyang Qin ◽  
Guanyu Sun

In recent years, due to the strong mobility, easy deployment, and low cost of unmanned aerial vehicles (UAV), great interest has arisen in utilizing UAVs to assist in wireless communication, especially for on-demand deployment in emergency situations and temporary events. However, UAVs can only provide users with data transmission services through wireless backhaul links established with a ground base station, and the limited capacity of the wireless backhaul link would limit the transmission speed of UAVs. Therefore, this paper designed a UAV-assisted wireless communication system that used cache technology and realized the transmission of multi-user data by using the mobility of UAVs and wireless cache technology. Considering the limited storage space and energy of UAVs, the joint optimization problem of the UAV’s trajectory, cache placement, and transmission power was established to minimize the mission time of the UAV. Since this problem was a non-convex problem, it was decomposed into three sub-problems: trajectory optimization, cache placement optimization, and power allocation optimization. An iterative algorithm based on the successive convex approximation and alternate optimization techniques was proposed to solve these three optimization problems. Finally, in the power allocation optimization, the proposed algorithm was improved by changing the optimization objective function. Numerical results showed that the algorithm had good performance and could effectively reduce the task completion time of the UAV.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881109 ◽  
Author(s):  
Pan Zhao ◽  
Lei Feng ◽  
Peng Yu ◽  
Wenjing Li ◽  
Xuesong Qiu

The explosive demands for mobile broadband service bring a major challenge to 5G wireless networks. Device-to-device communication, adopting side links for user-direct communication, is regarded as a main technical source for offloading large volume of mobile traffic from cellular base station. This article investigates the joint power and subcarrier allocation scheme for device-to-device communication in 5G time division duplex systems. In time division duplex system, instead of utilizing an exclusive portion of the precious cellular spectrum, device-to-device pairs reuse the subcarriers occupied by cellular users, thus producing harmful interference to cellular users in both uplink and downlink communication, and strongly limiting the spectrum efficiency of the system. To this end, we focus on the maximization of device-to-device throughput while guaranteeing both uplink and downlink channel quality of service of cellular users as well as device-to-device pairs. The problem is formulated as a mixed integer non-linear programming (MINLP) problem. To make it tractable, we separate the original MINLP problem into two sub problems: power allocation and sub-carrier reusing. The former is to develop optimal power allocation for each device-to-device pair and each cellular user, with the constraints of maximum power and quality of service. It is solved by geometric programming technique in convex optimization method. The latter is derived as a one-to-many matching problem for scheduling multiple subcarriers occupied by cellulars to device-to-device pairs. It is solved by Hungarian method. Simulation results show that the proposed scheme significantly improves system capacity of the device-to-device underlay network, with quality of service of both device-to-device users and cellular users guaranteed.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Harni Harniati ◽  
Syahrul Syahrul ◽  
Takdir Tahir

ABSTRACTBackground: Self-management programs are very important in the care of patients with COPD as an independent intervention in an effort to improve health status. Aim: Of this systematic review is to find out the form of self-management intervention in COPD patients, an instrument to measure the outcomes of self-management and the effects of self-management programs in COPD patients. Methods: Used are electronic data bases from journals published through ProQuest, PubMed., And ScienceDirect. Results: Of a review of 9 selected journals stated that self-management programs had an influence on increasing lung capacity, exercise capacity and health-related quality of life compared to patients who experienced standard care. The research instrument was used to measure lung capacity using spirometry, Exercise capacity used a six-minute walking distance (6MWD), Incremental Shuttle Walk Test (ISWT) and the Endurance Shuttle Walk Test (ESWT), and health-related quality of life measured by St George Respiratory Questionnaire (SGRQ). The results showed that the effects of self-management programs benefited in the quality of care, reduced the number of days of hospital care and did not increase the number of deaths. Conclusion: Self-management programs in COPD patients provide the ability to manage disease so that it can increase lung capacity, exercise capacity and quality of life related to health. Keywords: Chronic obstructive pulmonary disease, exercise capasity, lung   capacity self management program, quality of life


2021 ◽  
Vol 19 (2) ◽  
pp. 41-48
Author(s):  
Yu. V. Nemtsov ◽  
I. V. Seryogin ◽  
P. I. Volnov

Base station (BS) is a terminal device of a radio communication network, while railway radio communications play an important role in ensuring safety of passenger and cargo transportation.A proposed method for calculating the performance of base stations in railway digital radio communication networks is intended to calculate for the BS the probabilities of being in certain state.BS was decomposed and such functional elements as circuit groups and a radio frequency path were identified, as well as the central module ensuring the exchange of information with elements of this BS and with other BSs. A detailed study of each element has increased accuracy of the proposed method. Following the Markov model, BS is presented as a system in which all possible states are considered. Models for BS with two and three circuit groups have been constructed. The parameters of each functional element of the model can be obtained through observation over a certain period. The solution of the system of equations for each of the models presented in the article will allow obtaining the values of the system being in a certain state. The obtained characteristics can be used to calculate the reliability of the entire radio communication network, and then to assess quality of service provided to the users of this network.Conclusions are made about the possibilities of using the obtained models when designing new railway communication networks and when calculating quality indices of existing ones. The proposed models can be applied not only to railway radio communication networks but also to mobile communication networks of commercial operators. 


2020 ◽  
Vol 3 ◽  
pp. 69-74
Author(s):  
Thoalfiqar Ali Zaker ◽  
Talib Zeedan Taban ◽  
Firas S. Mohammed

This study estimates the performance of a free space optical system (FSO) affected by air pollutants from oil fires. Simulations are performed to evaluate the reliability of optical propagation according to the length of the FSO channels under two beam angle angles. The proposed FSO system parameters such as the Q-factor, BER and reception capacity are successfully used to reduce channel loss. Results demonstrate that the proposed FSO link performs satisfactorily when the divergence angle is 1 mrad and the distance is from 0.5 km to 0.9 km. Q-factor and receiving power decrease when the divergence angle of beam increases to 2 mrad, and a link is achieved when the distance is from 0.5 km to 0.7 km. The eye diagram is used to evaluate and confirm the quality of received data. An eye opening is observed at 0.5 km for both divergence angles. Then, the eye completely closes at 1 km for 2 mrad, thereby degrading the performance. Therefore, these results can be conducted for similar systems optimization options by applying our analysis


Sign in / Sign up

Export Citation Format

Share Document