scholarly journals Capturing CO2 from Biogas by MEA (Monoethanolamine) using Packed Bed Scrubber

2020 ◽  
Vol 4 (2) ◽  
pp. 105
Author(s):  
Iqbal Nur Daiyan ◽  
Leila Kalsum ◽  
Yohandri Bow

Biogas adalah salah satu sumber energi terbarukan yang dapat dimanfaatkan sebagai pengganti energi fosil. Biogas sebagian besar mengandung metan (CH4) dan karbon dioksida (CO2). Kandungan CO2 pada biogas mengurangi efisiensi pada proses pembakaran dan dapat menyebabkan korosi pada komponen-komponen logam yang kontak langsung dengan biogas. Pemurnian biogas dengan absorpsi merupakan suatu cara untuk menurunkan kadar CO2 yang terkandung, dan meningkatkan kandungan CH4 pada biogas sehingga biogas yang dihasilkan dapat digunakan sebagai bahan bakar. Penelitian ini ditujukkan untuk mempelajari pengaruh konsentrasi monoethanolamine (MEA) dan laju alir absorben terhadap penurunan kadar CO2 yang terkandung dalam biogas. Proses absorpsi CO2 dilakukan pada scrubber tipe spray tower, scrubber yang digunakan pada penelitian ini berbahan akrilik dengan diameter 64 mm, panjang scrubber 750 mm, tinggi packing pada scrubber 500 mm dan dengan kapasitas 1.5 m3. Laju alir biogas yang digunakan 26 L/menit dengan variasi laju alir larutan MEA sebesar 0,5, 1 dan 1,5 L/menit dan variasi konsentrasi larutan MEA sebesar 1, 3, 5, dan 7M. Hasil penelitian menunjukkan pada laju alir larutan MEA 1,5 L/menit dengan konsentrasi larutan MEA 7M dapat menurunkan CO2 dari 8,53% menjadi 0,10%, dan dapat meningkatkan kandungan metana (CH4) dari 69,24% menjadi 81,20%.Biogas is a renewable energy source that can be used as a substitute for fossil energy. Biogas mostly contains methane (CH4) and carbon dioxide (CO2). The content CO2 in biogas reduces the efficiency of the combustion process and cause corrosion in metal components when direct contact with biogas. Biogas purification using absorption method can reduce levels of CO2 contained and increase levels of CH4  then the biogas produced can be used as fuel. This research study the effect of monoethanolamine (MEA) concentration and absorbent flow rate on the reduction of CO2 contained in biogas. CO2 absorption process is carried out by a spray tower type scrubber. It consisted of an acrylic absorption column (64 mm in diameter, 750 mm in height, 500 mm in packing height and 1.5 m3 in capacity). Biogas flow rate used is 26 L/min with variation of the flow rate of MEA 0.5, 1, and 1,5 L/min and concentration of MEA solution 1, 3, 5, and 7M. The results showed that the flow rate of MEA 1.5 L/min with a concentration of 7M MEA solution can reduce CO2 from 8.53% to 0.10% and can increase the methane (CH4) load from 69.24% to 81.20%.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
R. Chandra ◽  
V. K. Vijay ◽  
P. M. V. Subbarao

This paper presents the results of an automated water scrubbing system used for enrichment of methane content in the biogas, to produce vehicular grade biomethane fuel. Incorporation of automatic control systems for precisely regulating the water level and maintaining constant operating pressure in the packed bed absorption column of water scrubbing system resulted in steady-state operation of the scrubbing system and a consistent supply of methane-enriched biogas from the gas outlet. The improved automated water scrubbing system was found to enrich 97% methane at an operating column pressure of 1.0 MPa with 2.5 m3/h biogas in-flow rate and 2.0 m3/h water in-flow rate into the scrubbing column unit.


2020 ◽  
Vol 8 (1) ◽  
pp. 1-5
Author(s):  
Anggit Raksajati ◽  
Tri Partono Adhi ◽  
Danu Ariono

Palm oil mill effluent (POME) from condensate stew, hydrocyclone water, and sludge separator contains organic carbon with a COD more than 40 g/L and a nitrogen content of about 0.2 and 0.5 g/L as ammonia nitrogen and total nitrogen. At present, the POME is converted into biogas using anaerobic ponds. Biogas produced contains 60% methane (CH4) and 40% carbon dioxide (CO2) and can be purified into biomethane through CO2 absorption using water. This study evaluates the optimum pressure and feed compression stage in biogas upgrading into biomethane. The results show the rate of circulation of water needed to separate CO2 from biogas feed decreases with increasing absorber pressure due to increased solubility of CO2 in water. Water circulation pumps and biogas compressor works increase due to the increase in pressure difference needed. The optimum pressure of the biogas biogas purification unit is within the range of 7-10 bar. At the same absorber pressure, the 1 stage feed compression unit is cheaper than that of 2 stages. However, the overall process with 1 compression stage might not be more economical than the 2-stage if consider the higher methane loss.


Author(s):  
Purnomosutji Dyah Prinajati

Greenhouse Gases (GHG) consists of various types of gases that are produced either naturally from the environment or from the activities of living things, some examples of the dominant GHGs are water vapor, carbon dioxide (CO2), methane (CH4), nitrogen oxides (NOx) and Sulfur Oxide (SOx), the largest contributors to GHG emissions are in the Energy sector, amounting to 175.62 million tons of CO2. Microalgae are the most primitive plants, can grow in low water quality with the availability of adequate nutrients and sunlight. The amount of CO2 that can be absorbed by 1 kg of dry spirulina is 1.83 kg of CO2. In addition, Spirulina Platensis can tolerate gas content of SOx, NOx and CO2 whose concentrations are <12%. This study aims to determine the process of utilizing CO2 gas emissions from power plant for the cultivation of Spirulina Platensis microalgae at PT. Indonesia Power UPJP Perak Grati. Based on the research results, the average emission load value generated from power plant, especially HRSG 1.1, is 10,403.31 tons CO2/ month on average. The temperature factor has a significant correlation with the growth of microalgae cells with an inverse correlation. Based on the tests carried out to determine the relationship between changes in the flow rate of CO2 in microalgae cultivation ponds to the growth of microalgae cells, it was found that the addition of CO2 in the cultivation pond with a flow rate of 1 L/ minute had a greater effect than other treatments. The amount of CO2 absorption by microalgae installations with a flow rate variation of 1 liter CO2/ minute is able to absorb 0.2766 tons of CO2/ month, or is only capable of <1% of the average emission load of HRSG 1.1 per month.


Author(s):  
Wojciech M. Budzianowski

An aqueous ammonia process (AAP) offers several advantageous technological features over other existing reactive absorption-based CO2 capture processes such as increased CO2 absorption loading capacity, no oxidative solvent degradation, no corrosion problems, high CO2 absorption fluxes and low energy input needed for solvent regeneration. It has also the potential of capturing multiple flue gas components (SO2, NOX, and CO2) and producing value added chemicals, such as ammonium sulfate, ammonium nitrate and ammonium bicarbonate, which are commonly used as fertilizers. Unfortunately, a major drawback of the AAP is NH3 volatility resulting in NH3vaporization to the flue gas. Therefore, the current article presents the results of experimental and numerical investigations directed at in-depth understanding of the AAP and at developing of new methods for mitigating the unwanted NH3 vaporization. For this purpose three types of reactor configurations are studied: (i) packed bed, (ii) falling film and (iii) membrane. The bench-scale experiments realized in the counter-current packed bed reactor reveal, that NH3 vaporization can be minimized under the conditions of low temperature, pH, and flow rate of flue gas and under the conditions of high pressure and flow rate of aqueous ammonia. Further, from the detailed 2D modeling of the AAP realized in the falling film reactor it is found, that NH3 vaporization can be mitigated by making use of the mechanisms of negative enhancement of mass transfer and of migrative mass transport. Finally, the potential benefits of using membrane facilitated AAP reactors are discussed.


Author(s):  
YANTI SUPRIANTI

ABSTRAKPemerintah menargetkan peningkatan peran energi terbarukanhingga mencapai 24% pada tahun 2050. Biogas sebagai salah satu dari sumber energi terbarukan harus memiliki nilai kalor yang memadaiagar dapat bersaing dengan sumber energi fosil. Zat yang memiliki kontribusi terbesar dalam menentukan nilai kalor biogas adalah Metana (CH4). Namun, biogas juga memiliki kandungan Karbon dioksida (CO2) yang bersifat tidak terbakar. Upaya untuk meningkatkan nilai kalor biogas dapat ditempuh dengan menurunkan kandungan CO2, salah satunya melalui proses adsorpsi. Penelitian ini menggunakan kolom adsorpsi seri berukuran 2,43 L untuk meningkatkan waktu kontak antara adsorben karbon aktif dengan gas-gas kontaminan. Hasil penelitian menunjukkan bahwa kandungan CO2 dapat ditekan hingga di bawah 14% pada waktu adsorpsi 10 menit,dan diperoleh kandungan CH4 hingga minimal 78,73%. Hasil optimum kinerja kolom adsorpsi seri yaitu pada laju alir 2,4 L/menit dan waktu adsorpsi 10 menit, mampu memurnikan biogas hingga mengandung CH4 91,60%. Pada kondisi optimum tersebut, efektifitas kolom adsorpsi adalah sebesar 98,31%.Kata kunci: biogas, pemurnian, karbon aktif, waktu adsorpsi, efektifitas kolom adsorpsi.ABSTRACTIndonesian government had targettedthe role of renewable energy, up to 24% in 2050. Biogas, as one of renewable energy, should have sufficient calorific valuein order to be efficiently used and competitive compared to fossil fuels. Methane (CH4) in biogas is the most important substance that determine biogas calorific value. On the other hand, another component of biogas, Carbon dioxide (CO2), the one that inhibit combustion process must be reduced. One of the methods to reduce CO2 content can be conducted through adsorption process. This research utilized serial adsorption column to increase contact between activated carbon as adsorbent and contaminant gases. The result showed that CO2 content can be suppressed below 14% in 10 minutes adsorption time, so that CH4 content can be upgraded above 78.73%. The optimum performance of serial adsorption column obtained at 2.4 lpm of biogas flow in 10 minutes adsorption time, able to purify biogas to 91.60% of CH4 content. In optimum condition, serial adsorption column effectiveness was 98.31%.Keywords: biogas, purification, activated carbon, adsorption time, serial adsorption column effectiveness.


2019 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Novi Sylvia ◽  
Anisa Anisa ◽  
Lukman Hakim

To increasing the heating value of biogas and natural gas on  industry needed a way to separate the carbon dioxide (CO2) use technology absorption. Many methods have been used to absorb the CO2 that has been researched, but most still use the absorption process in batch system. Therefore, this research will be conducted on the process of absorption of carbon dioxide (CO2) and water (H2O) will be simulated using Computational Fluid Dynamic (CFD). This research aims to test the performance of column absorption absorption on the process of carbon dioxide (CO2) and uses Autodesk Inventor  2016 and Fluent 16.0 to model the absorption and the pressure drop on the absorption column. This research was conducted with varying influence of the flow rate of water and carbon dioxide by comparison 2:1, i.e. CO2 117.75; 141.3 ;188.4 liters/min  and  H2O 235.5; 282.6 and 376.8 liters/minute.The results obtained show that the Percent of the maximum absorption i.e. 45.89% of flow rate of CO2 occurs at 117.75 liters/minute and H2O at 235.5 litres/minute, while the percent the minimum absorption i.e. 28.32% occurred at a flow rate of CO2 188.4 liters/minute and H2O 376.8 liters/minute. The highest pressure drop occurs at 188.4 liters/minute flow rate of CO2 and H2O 376.8 liters/minute, with a value of ∆P 0.66 atm, while the lowest pressure drop occurs at 177.75 liters/minute of CO2 and H2O at 235.5 litres/minute with the value of ∆P 0.17 atm.Key words:    absorption, water, Computational Fluid Dynamic, carbon dioxide, pressure drop


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


2020 ◽  
Vol 17 (4) ◽  
pp. 47-52
Author(s):  
Vibha Goswami ◽  
Renu Upadhyaya ◽  
Sumanta Kumar Meher

In this study, synthesised Azadirachta indica adsorbent was used for the removal of methylene blue dye using a packed bed column. The effect of feed flow rate, feed methylene blue dye concentration, and bed height of column on percentage removal of dye was studied. It was observed that the column bed exhausted rapidly at a higher flow rate and therefore, a breakthrough occurred faster. However, it was observed that bed exhaustion time increases on increasing the bed height from 2 to 10 inch at 10 mg/L feed dye concentration and feed flow rate of 40 ml/min. It was also found that the breakthrough curve is more dispersed and the percentage removal of dye increases on decreasing the feed methylene dye concentration from 150 to 10 mg/L. The percentage removal was found to be 96.89% at 20 ml/min of feed flow rate under 10 inch of bed height and 10 mg/L of feed dye concentration. The atomic absorption spectrophotometer and scanning electron microscope were used for estimating the effluent dye concentration from the column and morphological study, respectively.


2021 ◽  
Author(s):  
Wenzhang Li ◽  
Keke Wang ◽  
yanfang Ma ◽  
Yang Liu ◽  
Weixin Qiu ◽  
...  

The ever-growing factitious over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine...


Sign in / Sign up

Export Citation Format

Share Document