scholarly journals Circular RNA_PDHX Promotes the Proliferation and Invasion of Prostate Cancer by Sponging MiR-378a-3p

Author(s):  
Yuanshen Mao ◽  
Wenfeng Li ◽  
Bao Hua ◽  
Xin Gu ◽  
Weixin Pan ◽  
...  

The dysregulation of circular RNAs (circRNAs) is implicated in the pathogenesis of prostate cancer (PCa). However, the underlying mechanisms by which hsa_circ_0003768 (circPDHX) contributes to PCa remain elusive. The differentially expressed circRNAs between PCa and normal tissues were identified by Gene Expression Omnibus dataset. The association of circPDHX and miR-378a-3p expression with the clinicopathological parameters and prognosis in patients with PCa was analyzed by fluorescence in situ hybridization and The Cancer Genome Atlas dataset. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays as well as a xenograft tumor model were used to assess the role of circPDHX in PCa cells. circPDHX-specific binding with miR-378a-3p was validated by bioinformatic analysis, luciferase gene reporter, and RNA immunoprecipitation assays. As a result, we found that increased expression of circPDHX was associated with Gleason score (P = 0.001) and pathogenic T stage (P = 0.01) and acted as an independent prognostic factor of poor survival (P = 0.036) in patients with PCa. Knockdown of circPDHX inhibited cell proliferation and invasion in vitro and in vivo, but ectopic expression of circPDHX reversed these effects. Furthermore, circPDHX could sponge miR-378a-3p to promote cell proliferation, but miR-378a-3p counteracted circPDHX-induced cell proliferation and insulin-like growth factor 1 receptor (IGF1R) expression in PCa cells. In conclusion, our findings demonstrated that circPDHX facilitated the proliferation and invasion of PCa cells by sponging miR-378a-3p.

2019 ◽  
Vol 21 (10) ◽  
pp. 1284-1296 ◽  
Author(s):  
Shuai Zhang ◽  
Keman Liao ◽  
Zengli Miao ◽  
Qing Wang ◽  
Yifeng Miao ◽  
...  

Abstract Background Circular RNAs (circRNAs), a newly discovered type of endogenous noncoding RNA, have been proposed to mediate the progression of diverse types of tumors. Systematic studies of circRNAs have just begun, and the physiological roles of circRNAs remain largely unknown. Here, we focused on elucidating the potential role and molecular mechanism of circular forkhead box O3 (circFOXO3) in glioblastoma (GBM) progression. Methods First, we analyzed circFOXO3 alterations in GBM and noncancerous tissues through real-time quantitative reverse transcription PCR (qRT-PCR). Next, we used loss- and gain-of-function approaches to evaluate the effect of circFOXO3 on GBM cell proliferation and invasion. Mechanistically, fluorescent in situ hybridization, RNA pull-down, dual luciferase reporter, and RNA immunoprecipitation assays were performed to confirm the interaction between circFOXO3 and miR-138-5p/miR-432-5p in GBM. An animal model was used to verify the in vitro experimental findings. Results CircFOXO3 expression was significantly higher in GBM tissues than in noncancerous tissues. GBM cell proliferation and invasion were reduced by circFOXO3 knockdown and enhanced by circFOXO3 overexpression. Further biochemical analysis showed that circFOXO3 exerted its pro-tumorigenic activity by acting as a competing endogenous RNA (ceRNA) to increase expression of nuclear factor of activated T cells 5 (NFAT5) via sponging both miR-138-5p and miR-432-5p. Notably, tumor inhibition by circFOXO3 downregulation could be reversed by miR-138-5p/miR-432-5p inhibitors in GBM cells. Moreover, GBM cells with lower circFOXO3 expression developed less aggressive tumors in vivo. Conclusions Our data demonstrate that circFOXO3 can exert regulatory functions in GBM and that ceRNA-mediated microRNA sequestration might be a potential strategy for GBM therapy.


2019 ◽  
Vol 23 (3) ◽  
pp. 437-448 ◽  
Author(s):  
Zizhen Zhang ◽  
Chaojie Wang ◽  
Yeqian Zhang ◽  
Site Yu ◽  
Gang Zhao ◽  
...  

Abstract Background Circular RNAs (circRNAs) as a novel subgroup of non-coding RNAs act a critical role in the pathogenesis of gastric cancer (GC). However, the underlying mechanisms by which hsa_circ_0003855 (circDUSP16) contributes to GC are still undocumented. Materials The differentially expressed circRNAs were identified by GEO database. The association of circDUSP16 or miR-145-5p expression with clinicopathological features and prognosis in GC patients was analyzed by FISH and TCGA-seq data set. Loss- and gain-of-function experiments as well as a xenograft tumor model were performed to assess the role of circDUSP16 in GC cells. circDUSP16-specific binding with miR-145-5p was confirmed by bioinformatic analysis, luciferase reporter, and RNA immunoprecipitation assays. Results The expression levels of circDUSP16 were markedly increased in GC tissue samples and acted as an independent prognostic factor of poor survival in patients with GC. Knockdown of circDUSP16 repressed the cell viability, colony formation, and invasive potential in vitro and in vivo, but ectopic expression of circDUSP16 reversed these effects. Moreover, circDUSP16 possessed a co-localization with miR-145-5p in the cytoplasm, and acted as a sponge of miR-145-5p, which attenuated circDUSP16-induced tumor-promoting effects and IVNS1ABP expression in GC cells. MiR-145-5p had a negative correlation with circDUSP16 expression and its low expression was associated with poor survival in GC patients. Conclusions CircDUSP16 facilitates the tumorigenesis and invasion of GC cells by sponging miR-145-5p, and may provide a novel therapeutic target for GC.


Author(s):  
Yu Sun ◽  
Kai Xu ◽  
Miao He ◽  
Guilian Fan ◽  
Hongming Lu

Glypican 5 (GPC5) belongs to the family of heparan sulfate proteoglycans (HSPGs). It was initially known as a regulator of growth factors and morphogens. Recently, there have been reports on its correlation with the tumorigenic process in the development of some cancers. However, little is known about its precise role in prostate cancer (PCa). In the present study, we explored the expression pattern and biological functions of GPC5 in PCa cells. Our results showed that GPC5 was lowly expressed in PCa cell lines. Upregulation of GPC5 significantly inhibited PCa cell proliferation and invasion in vitro as well as attenuated tumor growth in vivo. We also found that overexpression of GPC5 inhibited the epithelial‐mesenchymal transition (EMT) and Wnt/β-catenin signaling activation, which was mediated by Sp1. Taken together, we suggest GPC5 as a tumor suppressor in PCa and provide promising therapeutic strategies for PCa.


2020 ◽  
Author(s):  
Qi Ju ◽  
Yaobang Liu ◽  
Bing Lian ◽  
Hong Li ◽  
Dahai Chai ◽  
...  

Abstract Background Histidine triad nucleotide-binding (HINT) protein belongs to the histidine triad proteins family. Recent studies have shown that HINT1 and HINT2 play pivotal roles in cancer growth. However, the function of HINT3 in cancers, including breast cancer (BRCA) remains to be determined. In the present study, we investigated the role of HINT3 in BRCA. Methods The clinical relevance of HINT3 in BRCA was analyzed using the datasets from The Cancer Genome Atlas. HINT3 was over-expressed and knocked down using lentivirus system. qRT-PCR and Western blot assays were performed to detect mRNA and protein expression. CCK-8 and colony formation assays were used to assess cell proliferation. Migration was analyzed using Transwell assay. Luciferase reporter activity assay was performed using pGL3.Basic/TK system. Xenogrfted tumorigenesis was performed to evaluate the effect of HINT3 on tumor development. Results HINT3 was down-regulated in BRCA tissues based on TCGA analysis and our qPCR analysis. TCGA database also showed that HINT3 transcript was much lower in BRCA tissues with higher stage. In vitro, HINT3 knockdown promoted the cell proliferation, colony growth and EDU cooperation in MCF7 and MDA-MB-231 cells. Oppositely, HINT3 overexpression suppressed the DNA synthesis and proliferation in both cells. In vivo, HINT3 ectopic expression blunted the xenografted tumorigenesis of MDA-MB-231 cells. Furthermore, HINT3 silencing or overexpression enhanced and inhibited the migration capacity of MCF7 and MDA-MB-231 cells, respectively. Lastly, HINT3 upregulated PTEN at transcription level, which resulted in inactivation of AKT/mTOR signaling in vitro and in vivo. Conclusions Taken together, HINT3 inhibits PTEN/AKT/mTOR signaling pathway and suppresses the proliferation, growth, migration and tumor development of BRCA cells.


2020 ◽  
Author(s):  
Qiliang Cai ◽  
Jiancheng Pan ◽  
Enli Liang ◽  
Dingrong Zhang ◽  
Cheng Fang ◽  
...  

Abstract Background: Prostate cancer (PCa) is one of the most common malignancies in men. Circular RNAs (circRNAs) are known to be the important regulators in cancer progression. However, the role of circRNAs in PCa is yet to be investigated. Therefore, this study focuses on investigating the effect and the underlying molecular mechanisms of hsa_circ_0001686 (circ_0001686) in PCa. Methods: Sample tissues were collected from the PCa patients to carry out the microarray expression profile of the human circRNAs. In addition, the expression levels of circ_0001686, has_miR-411-5p (miR-411-5p), SMAD3, and TGFBR2 were also detected by qRT-RCR. Next, transfection experiments were employed to measure the effect of circ_0001686 on cell proliferation, migration, and invasion in the PCa cell lines (CWR22RV1and LNCaP). These effects were analyzed using MTT, colony formation, transwell, and scratch wound assays, respectively. The si-circ_0001686 was used as a negative control. Starbase and TargetScan databases were used to predict the putative binding sites among circ_0001686, miR-411-5p, and SMAD3/TGFBR2. The dual-luciferase reporter assays were performed to verify these interactions. Furthermore, the levels of SMAD3 and TGFBR2 in CWR22RV1 and LNCaP cells were measured by western blot. Finally, in vivo experiments in the nude mouse model were carried out to strengthen the in vitro findings. Results: The expression of circ_0001686 was markedly up-regulated while the expression of miR-411-5p was down-regulated in PCa cells. Moreover, circ_0001686 promoted cell proliferation, migration, and invasion. Molecular mechanism exploration revealed that circ_0001686 acts as a sponge of miR-411-5p which affects the downstream target gene SMAD3, and TGFBR2. Both the in vitro and in vivo studies verified that miR-411-5p inhibits cancer growth and metastasis in PCa.Conclusions: The circ_0001686 sequesters miR-411-5p to increase the expression of SMAD3/TGFBR2 which consequently promotes the proliferation, invasion, and migration in PCa cells.


Author(s):  
Chen Du ◽  
Caihong Lv ◽  
Yue Feng ◽  
Siwen Yu

Abstract Background Accumulating evidence supports that lysine-specific demethylase 5 (KDM5) family members act as oncogenic drivers. This study was performed to elucidate the potential effects of KDM5A on prostate cancer (PCa) progression via the miR-495/YTHDF2/m6A-MOB3B axis. Methods The expression of KDM5A, miR-495, YTHDF2 and MOB3B was validated in human PCa tissues and cell lines. Ectopic expression and knockdown experiments were developed in PCa cells to evaluate their effects on PCa cell proliferation, migration, invasion and apoptosis. Mechanistic insights into the interaction among KDM5A, miR-495, YTHDF2 and MOB3B were obtained after dual luciferase reporter, ChIP, and PAR-CLIP assays. Me-RIP assay was used to determine m6A modification level of MOB3B mRNA in PCa cells. Mouse xenograft models of PCa cells were also established to monitor the tumor growth. Results KDM5A was highly expressed in human PCa tissues and cell lines. Upregulated KDM5A stimulated PCa cell proliferation, migration and invasion, but reduced cell apoptosis. Mechanistically, KDM5A, as a H3K4me3 demethylase, bound to the miR-495 promoter, which led to inhibition of its transcription and expression. As a target of miR-495, YTHDF2 could inhibit MOB3B expression by recognizing m6A modification of MOB3B mRNA and inducing mRNA degradation. Furthermore, KDM5A was found to downregulate MOB3B expression, consequently augmenting PCa cell proliferation, migration and invasion in vitro and promoting tumor growth in vivo via the miR-495/YTHDF2 axis. Conclusion In summary, our study highlights the potential of histone demethylase KDM5A activity in enhancing PCa progression, and suggests KDM5A as a promising target for PCa treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2019 ◽  
Vol 20 (19) ◽  
pp. 4946 ◽  
Author(s):  
Tsui ◽  
Lin ◽  
Chang ◽  
Hou ◽  
Chen ◽  
...  

Transgelin (TAGLN/SM22-α) is a regulator of the actin cytoskeleton, affecting the survival, migration, and apoptosis of various cancer cells divergently; however, the roles of TAGLN in bladder carcinoma cells remain inconclusive. We compared expressions of TAGLN in human bladder carcinoma cells to the normal human bladder tissues to determine the potential biological functions and regulatory mechanisms of TAGLN in bladder carcinoma cells. Results of RT-qPCR and immunoblot assays indicated that TAGLN expressions were higher in bladder smooth muscle cells, fibroblast cells, and normal epithelial cells than in carcinoma cells (RT-4, HT1376, TSGH-8301, and T24) in vitro. Besides, the results of RT-qPCR revealed that TAGLN expressions were higher in normal tissues than the paired tumor tissues. In vitro, TAGLN knockdown enhanced cell proliferation and invasion, while overexpression of TAGLN had the inverse effects in bladder carcinoma cells. Meanwhile, ectopic overexpression of TAGLN attenuated tumorigenesis in vivo. Immunofluorescence and immunoblot assays showed that TAGLN was predominantly in the cytosol and colocalized with F-actin. Ectopic overexpression of either p53 or PTEN induced TAGLN expression, while p53 knockdown downregulated TAGLN expression in bladder carcinoma cells. Our results indicate that TAGLN is a p53 and PTEN-upregulated gene, expressing higher levels in normal bladder epithelial cells than carcinoma cells. Further, TAGLN inhibited cell proliferation and invasion in vitro and blocked tumorigenesis in vivo. Collectively, it can be concluded that TAGLN is an antitumor gene in the human bladder.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Koudong Zhang ◽  
Hang Hu ◽  
Juan Xu ◽  
Limin Qiu ◽  
Haitao Chen ◽  
...  

Abstract Background Lung cancer (LC) is a malignant tumor originating in the bronchial mucosa or gland of the lung. Circular RNAs (circRNAs) are proved to be key regulators of tumor progression. However, the regulatory effect of circ_0001421 on lung cancer tumorigenesis remains unclear. Methods The expression levels of circ_0001421, microRNA-4677-3p (miR-4677-3p) and cell division cycle associated 3 (CDCA3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), Transwell and Tumor formation assays were performed to explore the role of circ_0001421 in LC. Glucose consumption and lactate production were examined by a Glucose assay kit and a Lactic Acid assay kit. Western blot was utilized to examine the protein levels of Hexokinase 2 (HK2) and CDCA3. The interaction between miR-4677-3p and circ_0001421 or CDCA3 was confirmed by dual-luciferase reporter assay. Results Circ_0001421 was increased in LC tissues and cells, and knockdown of circ_0001421 repressed cell proliferation, migration, invasion and glycolysis in vitro. Meanwhile, circ_0001421 knockdown inhibited LC tumor growth in vivo. Mechanistically, circ_0001421 could bind to miR-4677-3p, and CDCA3 was a target of miR-4677-3p. Rescue assays manifested that silencing miR-4677-3p or CDCA3 overexpression reversed circ_0001421 knockdown-mediated suppression on cell proliferation, migration, invasion and glycolysis in LC cells. Conclusion Circ_0001421 promoted cell proliferation, migration, invasion and glycolysis in LC by regulating the miR-4677-3p/CDCA3 axis, which providing a new mechanism for LC tumor progression.


Sign in / Sign up

Export Citation Format

Share Document