scholarly journals Exosomes Mediated Transfer of Circ_0000337 Contributes to Cisplatin (CDDP) Resistance of Esophageal Cancer by Regulating JAK2 via miR-377-3p

Author(s):  
Rukun Zang ◽  
Xiaowen Qiu ◽  
Yipeng Song ◽  
Yang Wang

Background: Chemoresistance remains a major obstacle to the treatment of esophageal cancer patients. Exosome-mediated transfer of circular RNAs (circRNAs) has been reported to be related to drug resistance in esophageal cancer. This study is designed to explore the role and mechanism of exosomal circ_0000337 on CDDP resistance in esophageal cancer.Methods: Cell viability, proliferation, colony number, apoptosis, migration, and invasion were assessed by Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, and transwell assays. Circ_0000337, microRNA-377 (miR-377-3p), and Janus kinase 2 (JAK2) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Exosomes were isolated and detected by differential centrifugation and a transmission electron microscope. Protein levels of CD9, CD63, and JAK2 were tested by Western blot assay. The binding relationship between miR-377-3p and circ_0000337 or JAK2 was predicted by circinteractome or Starbase and then verified by dual-luciferase reporter assay and RNA pull-down assay. The biological role of exosomal circ_0000337 and CDDP on esophageal cancer cell growth was examined by the xenograft tumor model in vivo.Results: Circ_0000337 and JAK2 were highly expressed, and miR-377-3p was decreased in CDDP-resistant esophageal cancer tissues and cells. Moreover, circ_0000337-containing exosomes secreted by CDDP-resistant esophageal cancer cells could promote CDDP resistance, cell growth, and metastasis in CDDP-sensitive esophageal cancer cells in vitro. The mechanical analysis discovered that circ_0000337 functioned as a sponge of miR-377-3p to regulate JAK2 expression. Exosomal circ_0000337 increased the drug resistance of esophageal cancer in vivo.Conclusion: Exosomal circ_0000337 accelerated CDDP resistance of esophageal cancer cells partly by regulating the miR-377-3p/JAK2 axis, hinting a promising therapeutic target for the esophageal cancer treatment.

2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092883
Author(s):  
Jie Chen ◽  
Chun-Yan Kang ◽  
Zhao-Xia Niu ◽  
Hui-Cong Zhou ◽  
Hong-Mei Yang

Objective To investigate the in vitro and in vivo anticancer effects of a chalcone against KYSE-4 esophageal cancer cells. Methods A chalcone was synthesized via the molecular hybridization strategy based on the anticancer activity of chalcone and dithiocarbamate scaffolds. The anticancer effects of different concentrations of the chalcone derivative were compared in esophageal cancer cells. Results This chalcone displayed strong inhibitory effects on esophageal cancer cell growth with an IC50 of 1.06 μM in KYSE-4 cells. Analysis of the mechanism revealed that the derivative obviously inhibited KYSE-4 cell growth, migration, and invasion in a concentration-dependent manner. Furthermore, the compound regulated migration-related biomarkers (E-cadherin, N-cadherin, and Slug) and inhibited the Wnt/β-catenin pathway. According to western blotting, this chalcone suppressed the expression of proline-rich protein 11 (PRR11) in a concentration- and time-dependent manner. Conclusions This chalcone might be a leading candidate for suppressing the growth and metastasis of esophageal cancer by downregulating PRR11 expression and inhibiting Wnt/β-catenin signaling.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chengjuan Zhang ◽  
Junxia Zhang ◽  
Qiong Wu ◽  
Benling Xu ◽  
Guoguo Jin ◽  
...  

Abstract Background As a novel type of isothiocyanate derived from radish seeds from cruciferous vegetables, sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) has various important biological effects, such as anti-oxidative and anti-bacterial effects. Recently, sulforaphene has attracted increasing attention for its anti-tumor effects and its ability to suppress the development of multiple tumors through different regulatory mechanisms. However, it has not yet been widely investigated for the treatment of esophageal cancer. Methods We observed an increased apoptosis in esophageal cancer cells on sulforaphene treatment through flow cytometry (FCM) analysis and transmission electron microscopy (TEM). Through mass spectrometry (MS) analysis, we further detected global changes in the proteomes and phosphoproteomes of esophageal cancer cells on sulforaphene treatment. The molecular mechanism of sulforaphene was verified by western blot,the effect and mechanism of SFE on esophageal cancer was further verified by patient-derived xenograft mouse model. Results We identified multiple cellular processes that were changed after sulforaphene treatment by proteomics. We found that sulforaphene could repress the phosphorylation of CREB through MSK2, leading to suppression of Bcl-2 and further promoted cell apoptosis. Additionally, we confirmed that sulforaphene induces tumor cell apoptosis in mice. Interestingly, we also observed the obvious inhibition of cell migration and invasion caused by sulforaphene treatment by inhibiting the expression of cadherin, indicating the complex effects of sulforaphene on the development of esophageal cancer. Conclusions Our data demonstrated that sulforaphene induced cell apoptosis and inhibits the invasion of esophageal cancer through a mechanism involving the inhibition of the MSK2–CREB–Bcl2 and cadherin pathway. Sulforaphene could therefore serve as a promising anti-tumor drug for the treatment of esophageal cancer.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yongshun Li ◽  
Changrong Huang ◽  
Qizhou Bai ◽  
Jun Yu

AbstractEsophageal cancer is a common digestive tract cancer, which is a serious threat to human health. Ribophorin II (RPN2) is a part of an N-oligosaccharyltransferase complex, which is excessively expressed in many kinds of cancers. In the present study, we explore the biological role of RNP2 in esophageal cancer. First, we found that the expression of RPN2 was higher in esophageal cancer tissues than in adjacent non-tumor tissues, and negatively correlated with E-cadherin expression. RPN2 expression levels in esophageal cancer tissues were positively associated with differentiation and tumor node metastasis (TNM) stage. Furthermore, the expression of RPN2 was increased significantly in esophageal cancer cell lines compared with normal cells. The effect of RPN2 down-regulation on cell proliferation, cell migration, and cell invasion was examined by cell counting kit-8 (CCK8), wound healing assay, and Transwell assay, respectively. Silencing RPN2 effectively inhibited cell proliferation of esophageal cancer cells in vitro and in vivo. Cell migration and invasion were also weakened dramatically by siRPN2 treatment of esophageal cancer cells. In addition, protein expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP-2), and E-cadherin in esophageal cancer cells was determined by Western blot analysis. PCNA, MMP-2, E-cadherin, Snail and phosphorylation-Smad2/3 expression was also regulated notably by siRPN2 treatment. These findings indicate that RPN2 exhibits oncogenetic capabilities in esophageal cancer, which could provide novel insights into esophageal cancer prevention and treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoli Wu ◽  
Yi Ren ◽  
Rong Yao ◽  
Leilei Zhou ◽  
Ruihua Fan

BackgroundDrug-resistance is a major obstacle to the treatment of breast cancer. Circular RNA (circRNA) circ-MMP11 has been reported to be promoting the progression of breast cancer. This study is designed to explore the role and mechanism of circ-MMP11 in lapatinib resistance in breast cancer.MethodsCirc-MMP11, microRNA-153-3p (miR-153-3p), and Anillin (ANLN) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, number of colonies, apoptosis, migration, and invasion were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation, flow cytometry, and transwell assays, respectively. Exosomes were exerted and detected by differential centrifugation and a transmission electron microscope. The protein levels of CD63, CD9, and ANLN were assessed by western blot assay. The binding relationship between miR-153-3p and circ-MMP11 or ANLN was predicted by circinteractome or starbase, and then verified by a dual-luciferase reporter assay and RNA pull-down assay. The biological role of circ-MMP11 on breast cancer tumor growth and drug resistance was detected by the xenograft tumor model in vivo.ResultsCirc-MMP11 and ANLN were highly expressed, and miR-153-3p was decreased in LR breast cancer tissues and cells. Circ-MMP11 could be transported by exosomes. Furthermore, circ-MMP11 knockdown promoted lapatinib sensitivity by repressing cell viability, colony number, migration, invasion, and boosting apoptosis in LR breast cancer cells. Circ-MMP11 deficiency improved the drug sensitivity of breast cancer in vivo. Mechanically, circ-MMP11 could regulate ANLN expression through sponging miR-153-3p.ConclusionCirc-MMP11 could be transferred by exosomes in breast cancer cells. And circ-MMP11 functioned as a sponge of miR-153-3p to regulate ANLN expression, thereby promoting lapatinib resistance in breast cancer cells, providing therapeutic targets for the treatment of breast cancer.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Author(s):  
Xinping Chen ◽  
Weihua Xu ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Junjie Hu ◽  
...  

Background: Increasing circular RNAs (circRNAs) are reported to participate in cancer progression. Nonetheless, the role of circRNAs in nasopharyngeal carcinoma (NPC) has not been fully clarified. This work is aimed to probe the role of circ_0000215 in NPC.Methods: Circ_0000215 expression in NPC tissues and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) assay, 5-bromo-2′-deoxyuridine (BrdU) assay, scratch healing assay and Transwell experiment were executed to investigate the regulatory function of circ_0000215 on the proliferation, migration and invasion of NPC cells. RNA immunoprecipitation (RIP), pull-down and dual-luciferase reporter experiments were utilized to determine the binding relationship between circ_0000215 and miR-512-5p, and between miR-512-5p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) 3′UTR. The effects of circ_0000215 on NPC growth and metastasis in vivo were examined with nude mice model. Western blot was applied to detect the regulatory effects of circ_0000215 and miR-512-5p on PIK3R1 expression.Results: Circ_0000215 was overexpressed in NPC tissues and cell lines. The functional experiments confirmed that knockdown of circ_0000215 impeded the growth and metastasis of NPC cells in vitro and in vivo. Additionally, circ_0000215 could also work as a molecular sponge to repress miR-512-5p expression. PIK3R1 was validated as a target gene of miR-512-5p, and circ_0000215 could increase the expression level of PIK3R1 in NPC cells via suppressing miR-512-5p.Conclusion: Circ_0000215 is overexpressed in NPC and exerts oncogenic effects in NPC through regulating miR-512-5p/PIK3R1 axis.


2018 ◽  
Vol 9 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Jian-Cai Tang ◽  
Jia Zhao ◽  
Feng Long ◽  
Jian-ye Chen ◽  
Bo Mu ◽  
...  

2021 ◽  
Author(s):  
xingang wang ◽  
YAN ZHENG ◽  
YU WANG

Abstract Background and AimsPseudopodium-enriched atypical kinase 1 (PEAK1) has reported to be upregulated in human malignancies and related with poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is not clear. Here, we investigated the PEAK1 expression in breast cancer and analyzed its relation with clinicopathological status and chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated the role of PEAK1 on breast cancer cells in vitro and in vivo. MethodsImmunohistochemistry (IHC) was performed in 112 surgical resected breast cancer tissues. The associations between clinicopathological status, multi-drug resistance and PEAK1 expression were determined. Effect of PEAK1 overexpression or down-expression on proliferation, colony formation, invasion, migration, metastasis and Doxorubicin sensitivity in the MCF-7 cells in vitro and in vivo was detected. ResultsPEAK1 was overexpressed in breast cancer tissues and NAC -resistant breast cancer tissues. High PEAK1 expression was related with tumor size, high tumor grade, T stage, LN metastasis, recurrence, Ki-67 expression, Her-2 expression and multi-drug resistance. Targeting PEAK1 inhibited cell growth, invasion, metastasis and reversed chemoresistance to Doxorubicin in breast cancer cells in vitro and in vivo. ConclusionHigh PEAK1 expression was associated with invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 could inhibit cell growth and metastasis, and reverse chemoresistance in breast cancer cells, which provides an effective treatment strategies for breast cancer.


2022 ◽  
Vol 22 ◽  
Author(s):  
Meng Li ◽  
Jiang Chang ◽  
Honglin Ren ◽  
Defeng Song ◽  
Jian Guo ◽  
...  

Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.


Sign in / Sign up

Export Citation Format

Share Document