scholarly journals Study of Variability of Waste Wood Samples Collected in a Panel Board Industry

2021 ◽  
Vol 9 ◽  
Author(s):  
Manuela Mancini ◽  
Åsmund Rinnan

Waste wood is becoming an appealing alternative material to virgin wood, and the main drivers are the increased demand for waste wood by the panel industry, the introduction of renewable energy policies, and the waste framework directive. In fact, the use of waste wood as a secondary resource is favored over both landfills and combustion. The best reuse and cascading use of the material are linked to its characteristics. That is why it is important to know the chemical composition and the variation in the properties of such a heterogeneous material. In this article, a sampling study was carried out in a panel board company located in the northern part of Italy. In order to investigate the heterogeneity of waste wood, all samples have been analyzed by near-infrared spectroscopy. Nested analysis of variance and principal component analysis have been used to evaluate the heterogeneity and the variation in sample properties. The approach gives information about how to ensure representative measurements and efficiently describe the variability of the material. The results suggest that it is important to have replicates or at least two subsamples for each lot and then measure each of these with at least 100 scans, in order to get representative measurements and describe the variability of the material. The determination of waste wood composition and variability is the focal point for improving the sorting process and increasing the reuse of waste wood, avoiding expensive landfills and risks for human health and the environment.

2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Elise A. Kho ◽  
Jill N. Fernandes ◽  
Andrew C. Kotze ◽  
Glen P. Fox ◽  
Maggy T. Sikulu-Lord ◽  
...  

Abstract Background Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, thereby preventing losses in production and flock welfare. We previously demonstrated the ability of visible–near-infrared (Vis–NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we report our investigation of whether variation in sheep type and environment affect the prediction accuracy of Vis–NIR spectroscopy in quantifying blood in faeces. Methods Visible–NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales, Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387–609 nm) using partial least squares regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). Samples from QLD were quantified using Hemastix® test strip and FAMACHA© diagnostic test scores. Results Principal component analysis showed that location, class of sheep and pooled versus individual samples were factors affecting the Hb predictions. The models successfully differentiated ‘healthy’ SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity 57–94%, specificity 44–79%). The models were not predictive for blood in the naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of the QLD samples, however, identified a difference between samples containing high and low quantities of blood. Conclusion This study demonstrates the potential of Vis–NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture sufficient environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.


2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


2007 ◽  
Vol 15 (3) ◽  
pp. 137-151 ◽  
Author(s):  
Hua Ma ◽  
Carl A. Anderson

A critical parameter in the evaluation of pharmaceutical dosage forms by hyperspectral imaging is the level of magnification. If the magnification (as set by the optical objective) is inadequate to resolve the relevant features, then the value of the imaging is diminished; if the magnification level is greater than is required, then the field of view is unnecessarily reduced. The purpose of this study was to determine an optimum magnification level for the study of powder mixing. Relevant features in this system include distribution of individual components within samples and the overall content of a given sample. In the present study, three magnification levels of near infrared (NIR) chemical imaging objectives were evaluated for their effects on imaging a blend of pharmaceutical materials (powders). High, medium and low objective magnification levels were investigated by comparing the resulting blend surface images of a two-component (salicylic acid and lactose) pharmaceutical powder mixture. Multiple images from high and medium magnification were concatenated so that an equivalent field of view was obtained for all magnification levels. Univariate images, principal component analysis score images, partial least squares predicted images and spectra extracted from different intensity regions in the area images were analysed qualitatively and quantitatively for comparison. A series of images spanning a strip across the centre of the circular field were collected at each magnification level and compared with respect to surface features elucidated and area of blend surface imaged. Analyses of images indicate that the three magnification levels delineate the component distribution for this particular powder system similarly. Images obtained at the low magnification level demonstrated adequate resolution and provided the broadest view of the blend surface. It is concluded that the low optical magnification level was adequate for the system being studied and is the preferred mode for pharmaceutical powder blend image data collection for this system.


1992 ◽  
Vol 46 (11) ◽  
pp. 1685-1694 ◽  
Author(s):  
Tomas Isaksson ◽  
Charles E. Miller ◽  
Tormod Næs

In this work, the abilities of near-infrared diffuse reflectance (NIR) and transmittance (NIT) spectroscopy to noninvasively determine the protein, fat, and water contents of plastic-wrapped homogenized meat are evaluated. One hundred homogenized beef samples, ranging from 1 to 23% fat, wrapped in polyamide/polyethylene laminates, were used. Results of multivariate calibration and prediction for protein, fat, and water contents are presented. The optimal test set prediction errors (root mean square error of prediction, RMSEP), obtained with the use of the principal component regression method with NIR data, were 0.45, 0.29 and 0.50 weight % for protein, fat, and water, respectively, for plastic-wrapped meat (compared to 0.40, 0.28 and 0.45 wt % for unwrapped meat). The optimal prediction errors for the NIT method were 0.31, 0.52 and 0.42 wt % for protein, fat, and water, respectively, for plastic-wrapped meat samples (compared to 0.27, 0.38, and 0.37 wt % for unwrapped meat). We can conclude that the addition of the laminate only slightly reduced the abilities of the NIR and NIT method to predict protein, fat, and water contents in homogenized meat.


2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Jae-Jin Park ◽  
Kyung-Ae Park ◽  
Pierre-Yves Foucher ◽  
Philippe Deliot ◽  
Stephane Le Floch ◽  
...  

With an increase in the overseas maritime transport of hazardous and noxious substances (HNSs), HNS-related spill accidents are on the rise. Thus, there is a need to completely understand the physical and chemical properties of HNSs. This can be achieved through establishing a library of spectral characteristics with respect to wavelengths from visible and near-infrared (VNIR) bands to shortwave infrared (SWIR) wavelengths. In this study, a ground HNS measurement experiment was conducted for artificially spilled HNS by using two hyperspectral cameras at VNIR and SWIR wavelengths. Representative HNSs such as styrene and toluene were spilled into an outdoor pool and their spectral characteristics were obtained. The relative ratio of HNS to seawater decreased and increased at 550 nm and showed different constant ratios at the SWIR wavelength. Noise removal and dimensional compression procedures were conducted by applying principal component analysis on HNS hyperspectral images. Pure HNS and seawater endmember spectra were extracted using four spectral mixture techniques—N-FINDR, pixel purity index (PPI), independent component analysis (ICA), and vertex component analysis (VCA). The accuracy of detection values of styrene and toluene through the comparison of the abundance fraction were 99.42% and 99.56%, respectively. The results of this study are useful for spectrum-based HNS detection in marine HNS accidents.


Sign in / Sign up

Export Citation Format

Share Document