scholarly journals Microbiome Analysis Reveals the Attenuation Effect of Lactobacillus From Yaks on Diarrhea via Modulation of Gut Microbiota

Author(s):  
Hailong Dong ◽  
Bingxian Liu ◽  
Aoyun Li ◽  
Mudassar Iqbal ◽  
Khalid Mehmood ◽  
...  

Domestic yaks (Bos grunniens) are indigenous to the Tibetan Plateau and display a high diarrhea rate due to poor habitat and husbandry conditions. Lactobacillus has been shown to exert beneficial effects as antimicrobial, growth promotion, and gut microbiota in humans and/or murine models, but the relevant data regarding Lactobacillus isolated from yaks was unavailable. Therefore, this study aimed to investigate the effects of Lactobacillus from yaks on the intestinal microbial community in a mouse model and determine whether Lactobacillus supplementation contributed in alleviating diarrhea by modulating gut microbiota. A total of 12 ileac samples from four groups were collected for 16S rRNA gene amplicon sequencing of V3-V4 region. Results revealed that although Lactobacillus supplementation did not change the diversity of gut microbiota in mice, the proportion of some intestinal microbiota significantly changed. Specifically, the proportion of Lactobacillus and Sphingomonas in the Lactobacillus treated-group (L-group) were increased as compared to control group (C-group), whereas Pantoea, Cutibacterium, Glutamicibacter, Turicibacter, Globicatella, Microbacterium, Facklamia, unidentified_Corynebacteriaceae, Brachybacterium, and Staphylococcus were significantly decreased in the L-group. In contrast, Escherichia coli (E. coli) infection significantly decreased the proportion of beneficial bacteria such as Globicatella, Acinetobacter, Aerococcus, and Comamonas, while loads of pathogenic bacteria significantly increased including Roseburia and Megasphaera. Interestingly, Lactobacillus administration could ameliorate the microbial community structure of E. coli-induced diarrheal mice by reducing the relative abundance of pathogenic bacteria such as Paenibacillus, Aerococcus, Comamonas, Acinetobacter, Corynebacterium, Facklamia, and Globicatella. Results in this study revealed that Lactobacillus supplementation not only improved the gut microbiota but also alleviated diarrhea in mice, which may be mediated by modulating the composition and function of gut microbiota. Moreover, this study is expected to provide a new theoretical basis for the establishment of a preventive and treatment system for diarrhea in yaks.

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 482
Author(s):  
Jae-Kwon Jo ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Hyun-Woo Kim ◽  
Eun-Ju Kim ◽  
...  

Obesity can be caused by microbes producing metabolites; it is thus important to determine the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms. To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control group. The increased relative abundance of Firmicutes in the HFD group was positively correlated with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis. This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and may help to understand the mechanisms underlying obesity mediated by gut microbiota.


Author(s):  
Huiling Cao ◽  
Chunhui Zong ◽  
Wenkui Dai ◽  
Qiaoying Gao ◽  
Donghua Li ◽  
...  

Sepsis is a common and often treacherous medical emergency with a high mortality and long-term complications in survivors. Though antibiotic therapy can reduce death rate of sepsis significantly, it impairs gut microbiota (GM), which play imperative roles in human health. In this study, we compared the therapeutic effects of antibiotics, probiotics, and Chinese medicine QRD on the survival rates of septic model and observed the GM characteristics of experimental rats via 16S rRNA gene amplicon sequencing. The 72 h survival rates of septic rat demonstrated the significant therapeutic effects in the three groups treated with antibiotics (AT), Chinses medicine QRD (QT), and probiotics (PT), which were elevated from the survival rate of 26.67% for the sepsis control group (ST) to 100.0% for AT, 88.24% for QT, and 58.33% for PT. The original characteristics of GM identified in the sham operation controls (SC) were relatively similar to those in PT and QT; nevertheless, the AT rats were shown dramatically decreased in the GM diversity. In addition, the septic rats in AT were revealed the higher abundances of Escherichia Shigella, Proteus, Morganella, Enterococcus, and Lysinibacillus, but the lower those of Parabacteroides, Alistipes, Desulfovibrio, Bacteroides, Helicobacter, Mucispirillum, Oscillibacter, Lachnospiraceae, and Ruminiclostridium 9, when compared to the PT and QT rats. By contrast, the GM of PT and QT rats shared similar diversity and structure. Our findings indicated that QRD increased the survival rates without impairment of the GM characteristics, which provides novel insights into the role of Chinese medicine in therapy and long-term recovery of sepsis.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Hila Korach-Rechtman ◽  
Maysaa Hreish ◽  
Carmit Fried ◽  
Shiran Gerassy-Vainberg ◽  
Zaher S. Azzam ◽  
...  

ABSTRACT Infection with carbapenem-resistant Enterobacteriaceae (CRE) has become an important challenge in health care settings and a growing concern worldwide. Since infection is preceded by colonization, an understanding of the latter may reduce CRE infections. We aimed to characterize the gut microbiota in CRE carriers, assuming that microbiota alterations precede CRE colonization. We evaluated the gut microbiota using 16S rRNA gene sequencing extracted of fecal samples collected from hospitalized CRE carriers and two control groups, hospitalized noncarriers and healthy adults. The microbiota diversity and composition in CRE-colonized patients differed from those of the control group participants. These CRE carriers displayed lower phylogenetic diversity and dysbiotic microbiota, enriched with members of the family Enterobacteriaceae. Concurrent with the enrichment in Enterobacteriaceae, a depletion of anaerobic commensals was observed. Additionally, changes in several predicted metabolic pathways were observed for the CRE carriers. Concomitantly, we found higher prevalence of bacteremia in the CRE carriers. Several clinical factors that might induce changes in the microbiota were examined and found to be insignificant between the groups. The compositional and functional changes in the microbiota of CRE-colonized patients are associated with increased risk for systemic infection. Our study results provide justification for attempts to restore the dysbiotic microbiota with probiotics or fecal transplantation. IMPORTANCE The gut microbiota plays important roles in the host’s normal function and health, including protection against colonization by pathogenic bacteria. Alterations in the gut microbial profile can potentially serve as an early diagnostic tool, as well as a therapeutic strategy against colonization by and carriage of harmful bacteria, including antibiotic-resistant pathogens. Here, we show that the microbiota of hospitalized patients demonstrated specific taxa which differed between carriers of carbapenem-resistant Enterobacteriaceae (CRE) and noncarriers. The difference in the microbiota also dictates alterations in microbiome-specific metabolic capabilities, in association with increased prevalence of systemic infection. Reintroducing specific strains and/or correction of dysbiosis with probiotics or fecal transplantation may potentially lead to colonization by bacterial taxa responsible for protection against or depletion of antibiotic-resistant pathogens.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohanraj Gunasekaran ◽  
Maya Lalzar ◽  
Yehonatan Sharaby ◽  
Ido Izhaki ◽  
Malka Halpern

AbstractSunbirds feed on tobacco tree nectar which contains toxic nicotine and anabasine secondary metabolites. Our aim was to understand the effect of nicotine and anabasine on the gut microbiota composition of sunbirds. Sixteen captive sunbirds were randomly assigned to two diets: artificial nectar either with (treatment) or without (control) added nicotine and anabasine. Excreta were collected at 0, 2, 4 and 7 weeks of treatment and samples were processed for bacterial culture and high-throughput amplicon sequencing of the 16S rRNA gene. The gut microbiome diversity of the treated and control birds changed differently along the seven-week experiment. While the diversity decreased in the control group along the first three samplings (0, 2 and 4 weeks), it increased in the treatment group. The microbiota composition analyses demonstrated that a diet with nicotine and anabasine, significantly changed the birds’ gut microbiota composition compared to the control birds. The abundance of nicotine- and anabasine- degrading bacteria in the excreta of the treated birds, was significantly higher after four and seven weeks compared to the control group. Furthermore, analysis of culturable isolates, including Lactococcus, showed that sunbirds’ gut-associated bacteria were capable of degrading nicotine and anabasine, consistent with their hypothesised role as detoxifying and nutritional symbionts.


2020 ◽  
Author(s):  
Yuanyuan He ◽  
Yating Luo ◽  
Qinwan Huang ◽  
Hongyun Zhou ◽  
Ming Qian ◽  
...  

Abstract Background: To investigate the effects of Xiaoning liquid on gut microbiota in mouse during asthma.Methods: A total of 60 mice were randomly and averagely assigned to healthy control group, control group, budesonide group, and Xiaoning liquid group. The later three groups were used to establish an Ovalbumin (OVA) asthma model. The intestinal bacterial communities were compared among groups using 16S rRNA gene amplification. Analyzing the structure of gut microbiota with OTU analysis, Shannon–Wiener, PCA, PCOA, etc. 16s rDNA high- throughput sequencing. Results: The abundance and diversity of the gut microbiota in asthmatic mice increased, most obviously in the control group. The Bacteroidetes and Firmicutes levels increased in all asthmatic mice. The level of Bacteroides increased most obviously, making Bacteroides a useful marker of gut microbiota changes in asthmatic mice. The levels of Proteobacterium, Deferribacteraceae and Mucispirillum dropped significantly in the Xiaoning liquid group. Conclusions: Xiaoning liquid can reduce the species and numbers of pathogenic bacteria and restored the intestinal microecology of asthmatic mice. Xiaoning liquid has a positive effect on the function of gut microbiota.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 106
Author(s):  
María Izco ◽  
Ariane Vettorazzi ◽  
Maria de Toro ◽  
Yolanda Sáenz ◽  
Lydia Alvarez-Erviti

Gut microbiota plays crucial roles in maintaining host health. External factors, such as diet, medicines, and environmental toxins, influence the composition of gut microbiota. Ochratoxin A (OTA) is one of the most prevalent and relevant mycotoxins and is a highly abundant food and animal feed contaminant. In the present study, we aimed to investigate OTA gut microbiome toxicity in mice sub-chronically exposed to low doses of OTA (0.21, 0.5, and 1.5 mg/kg body weight) by daily oral gavage for 28 days. Fecal microbiota from control and OTA-treated mice was analyzed using 16S ribosomal RNA (rRNA) gene sequencing followed by metagenomics. OTA exposure caused marked changes in gut microbial community structure, including the decrease in the diversity of fecal microbiota and the relative abundance of Firmicutes, as well as the increase in the relative abundance of Bacteroidetes at the phylum level. At the family level, six bacterial families (unclassified Bacteroidales, Porphyromonadaceae, unclassified Cyanobacteria, Streptococcaceae, Enterobacteriaceae, Ruminococcaceae) were significantly altered by OTA exposure. Interestingly, OTA-induced changes were observed in the lower-dose OTA groups, while high-dose OTA group microbiota was similar to control group. Our results demonstrated that sub-chronic exposure at low doses of OTA alters the structure and diversity of the gut microbial community.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lito E. Papanicolas ◽  
Sarah K. Sims ◽  
Steven L. Taylor ◽  
Sophie J. Miller ◽  
Christos S. Karapetis ◽  
...  

Abstract Background The gut microbiota influences many aspects of host physiology, including immune regulation, and is predictive of outcomes in cancer patients. However, whether conventional myelosuppressive chemotherapy affects the gut microbiota in humans with non-haematological malignancy, independent of antibiotic exposure, is unknown. Methods Faecal samples from 19 participants with non-haematological malignancy, who were receiving conventional chemotherapy regimens but not antibiotics, were examined prior to chemotherapy, 7–12 days after chemotherapy, and at the end of the first cycle of treatment. Gut microbiota diversity and composition was determined by 16S rRNA gene amplicon sequencing. Results Compared to pre-chemotherapy samples, samples collected 7–12 days following chemotherapy exhibited increased richness (mean 120 observed species ± SD 38 vs 134 ± 40; p = 0.007) and diversity (Shannon diversity: mean 6.4 ± 0.43 vs 6.6 ± 0.41; p = 0.02). Composition was significantly altered, with a significant decrease in the relative abundance of gram-positive bacteria in the phylum Firmicutes (pre-chemotherapy median relative abundance [IQR] 0.78 [0.11] vs 0.75 [0.11]; p = 0.003), and an increase in the relative abundance of gram-negative bacteria (Bacteroidetes: median [IQR] 0.16 [0.13] vs 0.21 [0.13]; p = 0.01 and Proteobacteria: 0.015 [0.018] vs 0.03 [0.03]; p = 0.02). Differences in microbiota characteristics from baseline were no longer significant at the end of the chemotherapy cycle. Conclusions Conventional chemotherapy results in significant changes in gut microbiota characteristics during the period of predicted myelosuppression post-chemotherapy. Further study is indicated to link microbiome changes during chemotherapy to clinical outcomes.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


2017 ◽  
Vol 117 (7) ◽  
pp. 964-978 ◽  
Author(s):  
Ann-Sofie R. Poulsen ◽  
Nadieh de Jonge ◽  
Sugiharto Sugiharto ◽  
Jeppe L. Nielsen ◽  
Charlotte Lauridsen ◽  
...  

AbstractThe aim of this study was to characterise the gut microbiota composition of piglets fed bovine colostrum (BC), milk replacer (MR) or sow milk (SM) in the post-weaning period. Piglets (n36), 23-d old, were randomly allocated to the three diets. Faecal samples were collected at 23, 25, 27 and 30 d of age. Digesta from the stomach, ileum, caecum and mid-colon was collected at 30 d of age. Bacterial DNA from all samples was subjected to amplicon sequencing of the 16S rRNA gene. Bacterial enumerations by culture and SCFA analysis were conducted as well. BC-piglets had the highest abundance ofLactococcusin the stomach (P<0·0001) and ileal (P<0·0001) digesta, whereas SM-piglets had the highest abundance ofLactobacillusin the stomach digesta (P<0·0001). MR-piglets had a high abundance of Enterobacteriaceae in the ileal digesta (P<0·0001) and a higher number of haemolytic bacteria in ileal (P=0·0002) and mid-colon (P=0·001) digesta than SM-piglets. BC-piglets showed the highest colonic concentration of iso-butyric and iso-valeric acid (P=0·02). Sequencing and culture showed that MR-piglets were colonised by a higher number of Enterobacteriaceae, whereas the gut microbiota of BC-piglets was characterised by a change in lactic acid bacteria genera when compared with SM-piglets. We conclude that especially the ileal microbiota of BC-piglets had a closer resemblance to that of SM-piglets in regard to the abundance of potential enteric pathogens than did MR-piglets. The results indicate that BC may be a useful substitute for regular milk replacers, and as a feeding supplement in the immediate post-weaning period.


2020 ◽  
Vol 20 (1) ◽  
pp. 179-189
Author(s):  
Leszek Tymczyna ◽  
Beata Trawińska ◽  
Marta Kowaleczko ◽  
Anna Chmielowiec-Korzeniowska ◽  
Jerzy Lechowski

AbstractThe aim of the study was to assess the gut microbiota and selected haematological and biochemical blood parameters of weaned piglets following dietary supplementation with a probiotic and vitamin C. the piglets were divided into a control group (group C) and an experimental group (group E), with 30 piglets in each group. All animals received the same feed ad libitum. The animals in the control group (group C) received feed with no added probiotic and vitamin C. the piglets in the experimental group (group E) were given a supplement containing a probiotic (Bacillus cereus 1×109 CFU/kg) in the amount of 1.5 g/piglet/day and vitamin c in the amount of 300 mg/piglet/day. The supplement was administered for 28 days. The total numbers of bacteria of the family Enterobacteriaceae and of the genus Lactobacillus were determined in faeces. The erythrocyte count, haemoglobin level, haematocrit, leukocyte count, and percentages of neutrophils and lymphocytes were determined in the blood. The biochemical analysis concerned the concentration of triacylglycerols, total cholesterol, and LDL and HDL cholesterol. In group E a significant decrease (P<0.01) in the total number of Enterobacteriaceae bacteria was observed in the faeces of the piglets, accompanied by an increase in the number of lactobacilli relative to group C. E. coli was found to predominate over other microorganisms. Salmonella choleraesuis bacteria were present in the faeces of both groups before administration of the supplement, but were not found after its use. The supplement with probiotic and vitamin C caused a significant increase in the erythrocyte, haemoglobin and haematocrit levels in the blood of the piglets and a significant decrease in the concentration of triacylglycerols, total cholesterol and LDL cholesterol.


Sign in / Sign up

Export Citation Format

Share Document