scholarly journals NKT Cells Contribute to the Control of Microbial Infections

Author(s):  
Stefan Vogt ◽  
Jochen Mattner

Innate (-like) T lymphocytes such as natural killer T (NKT) cells play a pivotal role in the recognition of microbial infections and their subsequent elimination. They frequently localize to potential sites of pathogen entry at which they survey extracellular and intracellular tissue spaces for microbial antigens. Engagement of their T cell receptors (TCRs) induces an explosive release of different cytokines and chemokines, which often pre-exist as constitutively expressed gene transcripts in NKT cells and underlie their poised effector state. Thus, NKT cells regulate immune cell migration and activation and subsequently, bridge innate and adaptive immune responses. In contrast to conventional T cells, which react to peptide antigens, NKT cells recognize lipids presented by the MHC class I like CD1d molecule on antigen presenting cells (APCs). Furthermore, each NKT cell TCR can recognize various antigen specificities, whereas a conventional T lymphocyte TCR reacts mostly only to one single antigen. These lipid antigens are either intermediates of the intracellular APC`s-own metabolism or originate from the cell wall of different bacteria, fungi or protozoan parasites. The best-characterized subset, the type 1 NKT cell subset expresses a semi-invariant TCR. In contrast, the TCR repertoire of type 2 NKT cells is diverse. Furthermore, NKT cells express a panoply of inhibitory and activating NK cell receptors (NKRs) that contribute to their primarily TCR-mediated rapid, innate like immune activation and even allow an adaption of their immune response in an adoptive like manner. Dueto their primary localization at host-environment interfaces, NKT cells are one of the first immune cells that interact with signals from different microbial pathogens. Vice versa, the mutual exchange with local commensal microbiota shapes also the biology of NKT cells, predominantly in the gastrointestinal tract. Following infection, two main signals drive the activation of NKT cells: first, cognate activation upon TCR ligation by microbial or endogenous lipid antigens; and second, bystander activation due to cytokines. Here we will discuss the role of NKT cells in the control of different microbial infections comparing pathogens expressing lipid ligands in their cell walls to infectious agents inducing endogenous lipid antigen presentation by APCs.

Author(s):  
Leoni Rolfes ◽  
Tobias Ruck ◽  
Christina David ◽  
Stine Mencl ◽  
Stefanie Bock ◽  
...  

AbstractRag1−/− mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1−/− mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1nullIL2rgnull (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1−/− and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1−/− NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1−/− were comparable in number and function to those in WT mice. Rag1−/− mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1−/− controls. Our results indicate that NK cells from Rag1−/− mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1641
Author(s):  
Emily E. S. Brettschneider ◽  
Masaki Terabe

Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.


2016 ◽  
Vol 68 (8) ◽  
pp. 665-676 ◽  
Author(s):  
Suryasarathi Dasgupta ◽  
Vipin Kumar
Keyword(s):  
Type Ii ◽  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hao Shen ◽  
Chan Gu ◽  
Tao Liang ◽  
Haifeng Liu ◽  
Fan Guo ◽  
...  

Abstract CD1d-dependent type I NKT cells, which are activated by lipid antigen, are known to play important roles in innate and adaptive immunity, as are a portion of type II NKT cells. However, the heterogeneity of NKT cells, especially NKT-like cells, remains largely unknown. Here, we report the profiling of NKT (NK1.1+CD3e+) cells in livers from wild type (WT), Jα18-deficient and CD1d-deficient mice by single-cell RNA sequencing. Unbiased transcriptional clustering revealed distinct cell subsets. The transcriptomic profiles identified the well-known CD1d-dependent NKT cells and defined two CD1d-independent NKT cell subsets. In addition, validation of marker genes revealed the differential organ distribution and landscape of NKT cell subsets during liver tumor progression. More importantly, we found that CD1d-independent Sca-1−CD62L+ NKT cells showed a strong ability to secrete IFN-γ after costimulation with IL-2, IL-12 and IL-18 in vitro. Collectively, our findings provide a comprehensive characterization of NKT cell heterogeneity and unveil a previously undefined functional NKT cell subset.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3878-3878
Author(s):  
Ilka Bondzio ◽  
Andreas Arendt ◽  
Jurgen Schmitz ◽  
Volker Huppert

Abstract Killer cell immunoglobulin-like receptors (KIRs) are known to modulate the cytotoxic ability of human Natural Killer (NK) cells, as well as a subset of T cells. To date, only a very small number of publications have discussed the role of KIRs on T cells, e.g. CMV-specific CD4+CD28-KIR+ cytotoxic T cells (van Bergen, J., J Immunol. 2004), so we investigated whether CD56+CD3+ NKT cells might also have KIR-positive subsets. Whole human blood as well as magnetically sorted human CD56+CD3+ NKT cells were analyzed for their expression of various KIR molecules using a novel panel of fluorochrome-conjugated, anti-KIR monoclonal antibodies (CD158a/h (KIR2DL1/DS1), CD158b (KIR2DL2), CD158e (KIR3DL1), CD158i (KIR2DS4), KIR2D; Miltenyi Biotec). KIR-positive CD56+CD3+ NKT cells were identified in every donor tested. Donors possessing NK cells of a specific KIR phenotype also possessed CD56+CD3+ NKT cells with the same KIR phenotype. KIRs were also expressed in a clonal fashion on CD56+CD3+ NKT cells, similarly to NK cells. The investigated KIRs were also shown to be expressed on unseparated NK and CD56+CD3+ NKT cells from whole blood. In addition, the ratio between KIR expression on NK and CD56+CD3+ NKT cells was calculated for each donor analyzed. The results show that there is no correlation between the frequencies of KIR expression on NK cells with that of CD56+CD3+ NKT cells. For example, the expression of CD158a/h in one donor was found to be the highest of all CD56+CD3+ NKT cells analyzed, but the lowest of all NK cells by comparison to the other donors tested. For all KIR phenotypes analyzed, the frequency of KIR+ NK cells was higher than the frequency of KIR+ CD56+CD3+ NKT cells in all samples (range: 1.1 to 25.3-fold higher). Interestingly, the frequency of KIR+ NK cells versus KIR+ CD56+CD3+ NKT cells differs significantly between donors: in one donor the frequency of KIR expression is between 7.3 to 25.3-fold higher in NK cells for multiple KIR phenotypes, while this range is more narrow in other donors (2.0–5.4-fold higher). The frequencies of CD56+CD3+ NKT cell subsets staining positive for particular KIRs differ significantly between donors, e.g. for CD158b, the number of positive CD56+CD3+ NKT cells fall within a range of 4.8% to 43.3%. For CD56+CD3+ NKT cells sorted with MACS® Technology, a similarly wide-ranging distribution of CD158b (KIR2DL2) expression was found (0.85%–5.82%), though at a lower level. Further research will be required to explore these differences as they may point to different mechanisms of KIR regulation. The identification of KIR-positive CD56+CD3+ NKT cells may also provide an opportunity for their use for functional KIR studies instead of NK cell clones, as the cloning of CD56+CD3+ NKT cells may prove easier (i.e. using standard T cell cloning methods) than that of NK cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quan Zhuang ◽  
Hao Li ◽  
Bo Peng ◽  
Yang Liu ◽  
Ying Zhang ◽  
...  

Background: Kidney transplantation (KTx) is a preeminent treatment for end-stage renal disease (ESRD). After the application of immunosuppressants (IS), renal allograft recipients could reach a state called accommodation which means they are neither rejected nor infected. This study aimed to describe the details of this immune accommodation and reveal a novel mechanism of IS on immune cell subpopulations.Methods: We analyzed multiple cell subgroups and their gene expression of peripheral T, B, myeloid, and NK cells from renal allograft recipients with accommodation and healthy control (HC) by single-cell transcriptomics sequencing (scRNA-seq) and flow cytometry.Results: A total of 8,272 cells were isolated and sequenced from three individuals, including 2,758 cells from HC, 2,550 cells from ESRD patient, and 2,964 cells from KTx patient, as well as 396 immune response–related genes were detected during sequencing. 5 T-cell, 4 NK-cell, 5 myeloid, and 4 B-cell clusters were defined. Among them, a B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) of renal transplant recipients with accommodation was significantly lower than that of HC and verified by flow cytometry, and this B-cell subset showed an activated potential because of its high expression of CD127. Furthermore, we found that IL32 might be the key cytokine to induce the differentiation of this B-cell cluster.Conclusion: We found a novel B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) which was inhibited and decreased in renal allograft recipients with accommodation. This study might reveal the effect of commonly used IS in clinical practice on B-cell subsets and related mechanism.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1279
Author(s):  
Stefan Schönberger ◽  
Daniela Kraft ◽  
Daniel Nettersheim ◽  
Hubert Schorle ◽  
Anna Casati ◽  
...  

Outcome in high-risk patients with refractory or relapsed germ cell tumours (GCT) remains poor. Novel strategies enhancing therapeutic efficacy whilst limiting therapeutic burden are warranted, yet immunotherapy approaches geared towards activating endogenous antitumor responses have not been successful thus far. Redirection of cytotoxic effector cells by bispecific antibodies represents a promising approach in this setting. We demonstrate that the Epithelial Cell Adhesion Molecule (EpCAM) is broadly expressed in GCT cell lines of different histologic origin including seminoma, choriocarcinoma (CHC), and embryonal carcinoma (EC). In these GCT lines of variable EpCAM surface expression, targeting T cells by the prototypic bispecific EpCAM/CD3-antibody (bAb) Catumaxomab together with natural killer (NK) cell engagement via the Fc domain promotes profound cytotoxicity across a broad range of antibody dilutions. In contrast, tumor cell lysis mediated by either immune cell subset alone is influenced by surface density of the target antigen. In the CHC line JAR, NK cell-dependent cytotoxicity dominates, which may be attributed to differential surface expression of immunomodulatory proteins such as MHC-I, CD24, and Fas receptors on CHC and EC. In view of redirecting T cell therapy mediated by bispecific antibodies, such differences in GCT immunophenotype potentially favoring immune escape are worth further investigation.


Blood ◽  
2011 ◽  
Vol 117 (6) ◽  
pp. 1880-1887 ◽  
Author(s):  
Hak-Jong Choi ◽  
Yanbiao Geng ◽  
Hoonsik Cho ◽  
Sha Li ◽  
Pramod Kumar Giri ◽  
...  

Abstract E26 Transformation specific (Ets) family transcription factors control the expression of a large number of genes regulating hematopoietic cell development and function. Two such transcription factors, Ets-1 and myeloid Elf-1–like factor (MEF), have been shown to play critical roles in both natural killer (NK)– and NKT-cell development, but not in the development of conventional T cells. In this study, we address the role of E74-like factor 1 (Elf-1), another Ets family transcription factor that is closely related to MEF but divergent from Ets-1, in NK- and NKT-cell development using Elf-1–deficient (Elf-1−/−) mice. Whereas the proportion of NK cells in Elf-1−/− mice was normal, the proportion of NKT cells was significantly reduced in the thymus and periphery of Elf-1−/− mice compared with wild-type (WT) mice. Although Ets-1–deficient mice lack NKT cells altogether, Elf-1−/− mice exhibited only a partial block in NKT-cell development caused by a cell-intrinsic defect in the selection, survival, and maturation of NKT cells. In addition, residual NKT cells found in Elf-1−/− mice produced less cytokine upon antigen stimulation compared with WT NKT cells. Our data demonstrate that Elf-1 plays an important and nonredundant role in the development and function of NKT cells, but is not involved in NK-cell development.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1329
Author(s):  
Zewde Ingram ◽  
Shriya Madan ◽  
Jenoy Merchant ◽  
Zakiya Carter ◽  
Zen Gordon ◽  
...  

Natural killer T (NKT) cells are a unique subset of lymphocytes that recognize lipid antigens in the context of the non-classical class I MHC molecule, CD1d, and serve as a link between the innate and adaptive immune system through their expeditious release of cytokines. Whereas NKT have well-established roles in mitigating a number of human diseases, herein, we focus on their role in cancer. NKT cells have been shown to directly and indirectly mediate anti-tumor immunity and manipulating their effector functions can have therapeutic significances in treatment of cancer. In this review, we highlight several therapeutic strategies that have been used to harness the effector functions of NKT cells to target different types of solid tumors. We also discuss several barriers to the successful utilization of NKT cells and summarize effective strategies being developed to harness the unique strengths of this potent population of T cells. Collectively, studies investigating the therapeutic potential of NKT cells serve not only to advance our understanding of this powerful immune cell subset, but also pave the way for future treatments focused on the modulation of NKT cell responses to enhance cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document