scholarly journals Long-Term Evolution of Greenhouse Gas Emissions From Global Reservoirs

2021 ◽  
Vol 9 ◽  
Author(s):  
Xingcheng Yan ◽  
Vincent Thieu ◽  
Josette Garnier

The contribution of artificial reservoirs to greenhouse gas (GHG) emissions has been emphasized in previous studies. In the present study, we collected and updated data on GHG emission rates from reservoirs at the global scale, and applied a new classification method based on the hydrobelt concept. Our results showed that CH4 and CO2 emissions were significantly different in the hydrobelt groups (p < 0.01), while no significant difference was found for N2O emissions, possibly due to their limited measurements. We found that annual GHG emissions (calculated as C or N) from global reservoirs amounted to 12.9 Tg CH4-C, 50.8 Tg CO2-C, and 0.04 Tg N2O-N. Furthermore, GHG emissions (calculated as CO2 equivalents) were also estimated for the 1950–2017 period based on the cumulative number and surface area of global reservoirs in the different hydrobelts. The highest increase rate in both the number of reservoirs and their surface area, which occurred from 1950 to the 1980s, led to an increase in GHG emissions from reservoirs. Since then, the increase rate of reservoir construction, and hence GHG emissions, has slowed down. Moreover, we also examined the potential impact of reservoir eutrophication on GHG emissions and found that GHG emissions from reservoirs could increase by 40% under conditions in which total phosphorus would double. In addition, we showed that the characteristics of reservoirs (e.g., geographical location) and their catchments (e.g., surrounding terrestrial net primary production, and precipitation) may influence GHG emissions. Overall, a major finding of our study was to provide an estimate of the impact of large reservoirs during the 1950–2017 period, in terms of GHG emissions. This should help anticipate future GHG emissions from reservoirs considering all reservoirs being planned worldwide. Besides using the classification per hydrobelt and thus reconnecting reservoirs to their watersheds, our study further emphasized the efforts to be made regarding the measurement of GHG emissions in some hydrobelts and in considering the growing number of reservoirs.

Author(s):  
Moneim Massar ◽  
Imran Reza ◽  
Syed Masiur Rahman ◽  
Sheikh Muhammad Habib Abdullah ◽  
Arshad Jamal ◽  
...  

The potential effects of autonomous vehicles (AVs) on greenhouse gas (GHG) emissions are uncertain, although numerous studies have been conducted to evaluate the impact. This paper aims to synthesize and review all the literature regarding the topic in a systematic manner to eliminate the bias and provide an overall insight, while incorporating some statistical analysis to provide an interval estimate of these studies. This paper addressed the effect of the positive and negative impacts reported in the literature in two categories of AVs: partial automation and full automation. The positive impacts represented in AVs’ possibility to reduce GHG emission can be attributed to some factors, including eco-driving, eco traffic signal, platooning, and less hunting for parking. The increase in vehicle mile travel (VMT) due to (i) modal shift to AVs by captive passengers, including elderly and disabled people and (ii) easier travel compared to other modes will contribute to raising the GHG emissions. The result shows that eco-driving and platooning have the most significant contribution to reducing GHG emissions by 35%. On the other side, easier travel and faster travel significantly contribute to the increase of GHG emissions by 41.24%. Study findings reveal that the positive emission changes may not be realized at a lower AV penetration rate, where the maximum emission reduction might take place within 60–80% of AV penetration into the network.


2015 ◽  
Vol 112 (43) ◽  
pp. 13267-13271 ◽  
Author(s):  
Geertje M. F. van der Heijden ◽  
Jennifer S. Powers ◽  
Stefan A. Schnitzer

Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.


Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public government policies, fuel cell cost, and battery cost on greenhouse gas (GHG) emissions in the US transportation sector. The model includes a government model and an enterprise model. To examine the effect on GHG emissions that fuel cell and battery cost has, the optimization model includes public policy, fuel cell and battery cost, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. For each selection of public policy, fuel cell cost and battery cost in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions. This paper demonstrates the model using FCV design as an illustrative example.


2021 ◽  
Author(s):  
Elsbe von der Lancken ◽  
Victoria Nasser ◽  
Katharina Hey ◽  
Stefan Siebert ◽  
Ana Meijide

<p>The need to sustain global food demand while mitigating greenhouse gases (GHG) emissions is a challenge for agricultural production systems. Since the reduction of GHGs has never been a breeding target, it is still unclear to which extend different crop varieties will affect GHG emissions. The objective of this study was to evaluate the impact of N-fertilization and of the use of growth regulators applied to three historical and three modern varieties of winter wheat on the emissions of the three most important anthropogenic GHGs, i.e. carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). Furthermore, we aimed at identifying which combination of cultivars and management practises could mitigate GHG emissions in agricultural systems without compromising the yield. GHG measurements were performed using the closed chamber method in a field experiment located in Göttingen (Germany) evaluating three historical and three modern winter wheat varieties, with or without growth regulators under two fertilization levels (120 and 240 kg nitrogen ha<sup>-1</sup>). GHG measurements were carried out for 2 weeks following the third nitrogen fertilizer application (where one third of the total nitrogen was applied), together with studies on the evolution of mineral nitrogen and dissolved organic carbon in the soil. Modern varieties showed significantly higher CO<sub>2</sub> emissions (i.e. soil and plant respiration; +23 %) than historical varieties. The soils were found to be a sink for CH<sub>4,</sub> but CH<sub>4</sub> fluxes were not affected by the different treatments. N<sub>2</sub>O emissions were not significantly influenced by the variety age or by the growth regulators, and emissions increased with increasing fertilization level. The global warming potential (GWP) for the modern varieties was 7284.0 ± 266.9 kg CO<sub>2-eq</sub> ha<sup>-1</sup>. Even though the GWP was lower for the historic varieties (5939.5 ± 238.2 kg CO<sub>2</sub>-<sub>eq</sub> ha<sup>-1</sup>), their greenhouse gas intensity (GHGI), which relates GHG and crop yield, was larger (1.5 ± 0.3 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), compared to the GHGI of modern varieties (0.9 ± 0.0 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), due to the much lower grain yield in the historic varieties. Our results suggest that in order to mitigate GHG emissions without compromising the grain yield, the best management practise is to use modern high yielding varieties with growth regulators and a fertilization scheme according to the demand of the crop.</p>


2017 ◽  
pp. 213-241
Author(s):  
Lidia Hrnčević

Greenhouse Gas (GHG) emissions occur, more or less, in all aspects of the petroleum industry's activities. Besides the direct emissions of some GHG, the petroleum industry is also characterised with high energy intensity usually followed by emissions of adverse gases, especially at old facilities, and also the products with high emission potential. Being the global industry and one of the major players on global market, the petroleum industry is also subjected to global regulatory provisions regarding GHG emissions. In this chapter, the impact of global climate change on the petroleum industry is discussed. The emissions from the petroleum industry are analysed with a special focus on greenhouse gases that occur in petroleum industry activities and types and sources of emissions from the petroleum industry activities. In addition, recommendations for estimation, monitoring, and reductions of GHG emissions from the petroleum industry are given.


2017 ◽  
Author(s):  
Pavle Arsenovic ◽  
Eugene Rozanov ◽  
Julien Anet ◽  
Andrea Stenke ◽  
Thomas Peter

Abstract. Continued anthropogenic greenhouse gas (GHG) emissions are expected to cause further global warming throughout the 21st century. Understanding potential interferences with natural forcings is thus of great interest. Here we investigate the impact of a recently proposed 21st century grand solar minimum on atmospheric chemistry and climate using the SOCOL3-MPIOM chemistry-climate model with interactive ocean. We examine several model simulations for the period 2000–2199, following the greenhouse gas scenario RCP4.5, but with different solar forcings: the reference simulation is forced by perpetual repetition of solar cycle 23 until the year 2199, whereas the grand solar minimum simulations assume strong declines in solar activity of 3.5 and 6.5 W m−2 with different durations. Decreased solar activity is found to yield up to a doubling of the GHG induced stratospheric and mesospheric cooling. Under the grand solar minimum scenario tropospheric temperatures are also projected to decrease. On the global scale the reduced solar forcing compensates at most 15 % of the expected greenhouse warming at the end of 21st and around 25 % at the end of 22nd century. The regional effects are predicted to be stronger, in particular in northern high latitude winter. In the stratosphere, the reduced incoming ultraviolet radiation leads to less ozone production by up to 8 %, which overcompensates the anticipated ozone increase due to reduced stratospheric temperatures and an acceleration of the Brewer-Dobson circulation. This, in turn, leads to a delay in total ozone column recovery from anthropogenic chlorine-induced depletion, with a global ozone recovery to the pre-ozone hole values happening only upon completion of the grand solar minimum in the 22nd century or later.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 504 ◽  
Author(s):  
Fumiaki Takakai ◽  
Masahiro Kobayashi ◽  
Takashi Sato ◽  
Kentaro Yasuda ◽  
Yoshihiro Kaneta

The effects of conversion from staple rice to forage rice on carbon and greenhouse gas (GHG) balances in a paddy field were evaluated. A staple rice plot without the application of livestock manure compost (LMC, S − M plot) and forage rice plots with and without the application of LMC, derived mainly from cattle (2 kg−FW m−2, F + M and F − M plots, respectively), were established. CH4 and N2O fluxes and CO2 flux from a bare soil plot for organic matter decomposition (OMD) were measured. The carbon budget was calculated by subtracting the OMD, CH4 emission, and harvested grain and straw (forage rice only) from the net primary production and LMC. The net GHG balance was calculated by integrating them as CO2 equivalents. There were no significant differences in GHG flux among the plots. Compared to the carbon loss in the S − M plot, the loss increased by harvesting straw and was mitigated by LMC application. The net GHG emission in the F + M plot was significantly lower than that in other plots (1.78 and 2.63−2.77 kg CO2-eq m−2 year−1, respectively). There is a possibility that GHG emissions could be suppressed by forage rice cultivation with the application of LMC.


2015 ◽  
Vol 787 ◽  
pp. 187-191
Author(s):  
P.M. Sivaram ◽  
N. Gowdhaman ◽  
D.Y. Ebin Davis ◽  
M. Subramanian

Global warming and climate change are the foremost environmental challenges facing the world today. It is our responsibility to minimize the consumption of energy and hence reduce the emissions of greenhouse gases. Companies choose ‘Carbon Footprint’ as a tool to calculate the greenhouse gas emission to show the impact of their activities on the environment. In this working paper, we assess the carbon foot print of an educational institution and suggest suitable measures for reducing it. Greenhouse gas emitting protocol for an academic institution in terms of tones of equivalent CO2 per year is projected using three basic steps includes planning (assessment of data’s), calculation and estimation of CO2 emitted. The estimation of carbon foot print is calculated by accounting direct emission from sources owned/controlled by the educational institution and from indirect emission i.e. purchased electricity, electricity produced by diesel Generator (DG), transport, cooking (Liquefied Petroleum Gas) and other outsourced distribution. The CO2 absorbed by trees are also accounted. Some of the options are identified in order to reduce CO2 level. The information of corporate carbon footprint helps us identifying the Green House Gases (GHG) emission “hot spots” and identifies where the greatest capacity exists in order to reduce the GHG emissions. The main prioritization goes to transport and then followed by DG, cooking and then electricity. The per capita CO2 emission and the total CO2 emission for a typical educational institution are estimated.


2013 ◽  
Vol 10 (2) ◽  
pp. 209-216

A field study on the impact of fireplace on the indoor air quality was carried out between 2004 and 2006, where two main contaminants, CO and particulate matters, were investigated in twenty seven randomly selected Irish houses. The results show that while the physical environment has been improved by increasing the room air and radiant temperature, indoor air quality is significantly decreased when fireplace is used as additional heating source to the central heating. The operation of fireplace increased transient concentrations of CO and airborne particle to several times higher than the normal house average level. Statistical analysis showed significant difference of the average PM10 concentration between house groups with and without using fireplace. However fireplace did not demonstrate a significant influence on average CO level from our samples. When comparisons were made between houses with various emission sources, i.e. fireplace, smoking and open fire gas cooking, and houses free of the above sources, smoking and open fire gas cookers were proved to be other major sources of particles and CO. Particularly when they exist at the same time with fireplace, significant elevation of CO and airborne particle levels is observed in analysis. Cumulative probability analysis in some houses revealed high percentage of time exceeding health guidelines which indicated the potential health risk in these houses. Mass balance equation was employed to estimate particle emission rates from fireplace, namely 0.66 mg min-1 (PM10) and 0.20 mg min-1 (PM2.5) respectively in terms of mass concentration. Emission rates on particle numbers were also estimated despite the relatively smaller sample. Gas fuel fireplaces tended to emit fewer particles both in mass and in number comparing to fireplaces using solid fuels.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5730
Author(s):  
Miguel A. Martínez ◽  
Ángeles Cámara

This paper analyzes the impact of the fall in household consumption after an economic crisis in Spain on greenhouse gas emissions. To this end, household consumption is differentiated by the age of the main provider by using a conversion matrix that relates consumption groups to activity sectors. A multisectoral model was used to quantify and compare the environmental impact caused by the consumption of each age group, indicating that the older the age of the main household provider, the smaller the reduction in GHG emissions associated with their consumption. The results facilitate an analysis of how the greenhouse gas emissions of the different sectors of the Spanish economy, associated with the population under study, varied before and after the 2008 crisis, and confirm that the sectors with the greatest reduction in emissions were, in this order, extractive industries, construction, manufacturing industry, wholesale and retail trade and transport and storage. This is relevant for decision making in the field of environmental policies in crises, akin to the one the world is currently experiencing.


Sign in / Sign up

Export Citation Format

Share Document