scholarly journals Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice

2021 ◽  
Vol 9 ◽  
Author(s):  
Theodora Fuss

Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.

2021 ◽  
Vol 9 ◽  
Author(s):  
Theodora Fuss

The idea of “smart is sexy,” meaning superior cognition provides competitive benefits in mate choice and, therefore, evolutionary advantages in terms of reproductive fitness, is both exciting and captivating. Cognitively flexible individuals perceive and adapt more dynamically to (unpredictable) environmental changes. The sex roles that females and males adopt within their populations can vary greatly in response to the prevalent mating system. Based on how cognition determines these grossly divergent sex roles, different selection pressures could possibly shape the (progressive) evolution of cognitive abilities, suggesting the potential to induce sexual dimorphisms in superior cognitive abilities. Associations between an individual’s mating success, sexual traits and its cognitive abilities have been found consistently across vertebrate species and taxa, providing evidence that sexual selection may well shape the supporting cognitive prerequisites. Yet, while superior cognitive abilities provide benefits such as higher feeding success, improved antipredator behavior, or more favorable mate choice, they also claim costs such as higher energy levels and metabolic rates, which in turn may reduce fecundity, growth, or immune response. There is compelling evidence in a variety of vertebrate taxa that females appear to prefer skilled problem-solver males, i.e., they prefer those that appear to have better cognitive abilities. Consequently, cognition is also likely to have substantial effects on sexual selection processes. How the choosing sex assesses the cognitive abilities of potential mates has not been explored conclusively yet. Do cognitive skills guide an individual’s mate choice and does learning change an individual’s mate choice decisions? How and to which extent do individuals use their own cognitive skills to assess those of their conspecifics when choosing a mate? How does an individual’s role within a mating system influence the choice of the choosing sex in this context? Drawing on several examples from the vertebrate world, this review aims to elucidate various aspects associated with cognitive sex differences, the different roles of males and females in social and sexual interactions, and the potential influence of cognition on mate choice decisions. Finally, future perspectives aim to identify ways to answer the central question of how the triad of sex, cognition, and mate choice interacts.


Behaviour ◽  
1995 ◽  
Vol 132 (11-12) ◽  
pp. 861-874 ◽  
Author(s):  
Sigal Balshine-Earn ◽  
Brendan J. Mcandrew

AbstractIn the animal kingdom most species follow standard sex roles: males compete more intensely for mates and females exert greater mate choice. Recent theory suggests that the direction of sexual selection is the outcome of sexual differences in potential reproductive rates (PRRs): the sex with the higher PRR will compete for mates and the sex with the lower PRR will be most selective. This study tests the theory experimentally by examining competition for mates and mate choice in the black-chinned tilapia, Sarotherodon melanotheron, a paternal mouth brooding cichlid. In this species, the PRR of males is lower than that of females. In laboratory competition trials, females were more aggressive: they bit, chased and initiated mouth fights more often than males. Dominant females were also much better at monopolising potential mates compared to dominant males. A second experiment confirmed that males were choosy for size, preferring large partners over small ones, while females did not discriminate for size. Therefore, the prediction of sex role reversal (competitive females and discriminating males) is confirmed.


2021 ◽  
Vol 22 (9) ◽  
pp. 4822
Author(s):  
Viktória Kovács ◽  
Gábor Remzső ◽  
Tímea Körmöczi ◽  
Róbert Berkecz ◽  
Valéria Tóth-Szűki ◽  
...  

Hypoxic–ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = −17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model.


1982 ◽  
Vol 55 (2) ◽  
pp. 559-562
Author(s):  
Claire Etaugh ◽  
Sharon Weber

48 female and 48 male college students used the Bern Sex-role Inventory to describe either a young or middle-aged woman or man. Female subjects perceived that women become increasingly feminine and less androgynous with age. No age-related changes were perceived in men's sex-role behaviors.


1988 ◽  
Vol 52 (2) ◽  
pp. 75-85 ◽  
Author(s):  
Mary C. Gilly

In the past, research has found that the portrayal of sex roles in advertising has not reflected equality or reality. Further, studies typically have examined only U.S. advertising, leaving open the question of cultural influence on advertising's sex role portrayals. The author offers a new analysis of sex roles in advertising and compares content analysis findings for U.S., Australian, and Mexican television advertisements. Results reveal differences in the portrayal of the sexes in U.S. advertisements. Australian advertisements show somewhat fewer sex role differences and Mexican advertisements show slightly more sex role differences than U.S. advertisements. Stereotypes are found in the advertising of all three countries, but are manifested in different ways.


2004 ◽  
Vol 184 (5) ◽  
pp. 409-415 ◽  
Author(s):  
J. Eric Jensen ◽  
Jodi Miller ◽  
Peter C. Williamson ◽  
Richard W J. Neufeld ◽  
Ravi S. Menon ◽  
...  

BackgroundMembrane phospholipid and high-energy abnormalities measured with phosphorus magnetic resonance spectroscopy (31P-MRS) have been reported in patients with schizophrenia in several brain regions.AimsUsing improved imaging techniques, previously inaccessible brain regions were examined in patients with first-episode schizophrenia and healthy volunteers with 4.0 T 31P-MRS.MethodBrain spectra were collected in vivo from 15 patients with first-episode schizophrenia and 15 healthy volunteers from 15 cm3 effective voxels in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex and parieto-occipital cortex.ResultsPeople with first-episode schizophrenia showed increased levels of glycerophosphocholine in the anterior cingulate. Inorganic phosphate, phosphocreatine and adenosine triphosphate concentrations were also increased in the anterior cingulate in this group.ConclusionsThe increased phosphodiester and high-energy phosphate levels in the anterior cingulate of brains of people with first-episode schizophrenia may indicate neural overactivity in this region during the early stages of the illness, resulting in increased excitotoxic neural membrane breakdown.


2021 ◽  
Author(s):  
Osama Hamadelseed ◽  
Thomas Skutella

Abstract INTRODUCTION: Down syndrome (DS) is the most common genetic cause of intellectual disability. Here, we use magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes.METHODS: Thirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls were analyzed by MRI and underwent a psychological evaluation for language and cognitive abilities.RESULTS: The neuropsychological profile of DS patients showed deficits in different cognition and language domains in correlation with reduced volumes of specific regional and subregional brain structures.CONCLUSIONS: The memory functions and language skills affected in our DS patients correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.


2021 ◽  
Vol 15 ◽  
Author(s):  
José Augusto Bragatti

The phenomenon of Forced Normalization (FN) was first described by Landolt in 1953, who described the disappearance of epileptiform discharges in the EEG of patients with epilepsy, concomitant with the development of psychotic symptoms. Later, Tellenbach coined the term “alternative psychosis” referring specifically to the alternation between clinical phenomena. Finally, in 1991, Wolf observed a degenerative process involved in the phenomenon, which he called “paradoxical normalization.” Initially, FN was explained through experimental models in animals and the demonstration of the kindling phenomenon, in its electrical and pharmacological subdivisions. At this stage of research on the epileptic phenomenon, repetitive electrical stimuli applied to susceptible regions of the brain (hippocampus and amygdala) were considered to explain the pathophysiological basis of temporal lobe epileptogenesis. Likewise, through pharmacological manipulation, especially of dopaminergic circuits, psychiatric comorbidities began to find their basic mechanisms. With the development of new imaging techniques (EEG/fMRI), studies in the area started to focus on the functional connectivity (FC) of different brain regions with specific neuronal networks, which govern emotions. Thus, a series of evidence was produced relating the occurrence of epileptic discharges in the limbic system and their consequent coactivation and deactivation of these resting-state networks. However, there are still many controversies regarding the basic mechanisms of network alterations related to emotional control, which will need to be studied with a more homogeneous methodology, in order to try to explain this interesting neuropsychiatric phenomenon with greater accuracy.


Author(s):  
Marcus Meinzer ◽  
Lena Ulm ◽  
Robert Lindenberg

Language recovery after stroke is often incomplete and residual symptoms may persist for many years. However, there is ample evidence for structural and functional reorganization of language networks after stroke that mediate recovery. This chapter reviews studies that investigated biological markers of language recovery by means of functional and structural imaging techniques. In particular, we discuss neural signatures associated with spontaneous and treatment-induced language recovery across the first year poststroke and in the chronic stage of aphasia, studies that aimed at predicting recovery and treatment outcome as well as recent developments in brain stimulation that may be suited to enhance the potential for functional recovery.


Author(s):  
Zakia Z Haque ◽  
Ranshikha Samandra ◽  
Farshad Alizadeh Mansouri

The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behaviour and therefore describes an important aspect of executive control of behaviour for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various non-invasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behaviour. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and non-invasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.


Sign in / Sign up

Export Citation Format

Share Document