scholarly journals Genome-Wide DNA Methylation Profile in Jejunum Reveals the Potential Genes Associated With Paratuberculosis in Dairy Cattle

2021 ◽  
Vol 12 ◽  
Author(s):  
Junnan Zhang ◽  
Bo Han ◽  
Weijie Zheng ◽  
Shan Lin ◽  
Houcheng Li ◽  
...  

Paratuberculosis in cattle causes substantial economic losses to the dairy industry. Exploring functional genes and corresponding regulatory pathways related to resistance or susceptibility to paratuberculosis is essential to the breeding of disease resistance in cattle. Co-analysis of genome-wide DNA methylation and transcriptome profiles is a critically important approach to understand potential regulatory mechanism underlying the development of diseases. In this study, we characterized the profiles of DNA methylation of jejunum from nine Holstein cows in clinical, subclinical, and healthy groups using whole-genome bisulfite sequencing (WGBS). The average methylation level in functional regions was 29.95% in the promoter, 29.65% in the 5’ untranslated region (UTR), 68.24% in exons, 71.55% in introns, and 72.81% in the 3’ UTR. A total of 3,911, 4,336, and 4,094 differentially methylated genes (DMGs) were detected in clinical vs. subclinical, clinical vs. healthy, and subclinical vs. healthy comparative group, respectively. Gene ontology (GO) and analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these DMGs were significantly enriched in specific biological processes related to immune response, such as Th1 and Th2 cell differentiation, wnt, TNF, MAPK, ECM-receptor interaction, cellular senescence, calcium, and chemokine signaling pathways (q value <0.05). The integration of information about DMGs, differentially expressed genes (DEGs), and biological functions suggested nine genes CALCRL, TNC, GATA4, CD44, TGM3, CXCL9, CXCL10, PPARG, and NFATC1 as promising candidates related to resistance/susceptibility to Mycobacterium avium subspecies paratuberculosis (MAP). This study reports on the high-resolution DNA methylation landscapes of the jejunum methylome across three conditions (clinical, subclinical, and healthy) in dairy cows. Our investigations integrated different sources of information about DMGs, DEGs, and pathways, enabling us to find nine functional genes that might have potential application in resisting paratuberculosis in dairy cattle.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanmei Wang ◽  
Liying Liu ◽  
Min Li ◽  
Lili Lin ◽  
Pengcheng Su ◽  
...  

Abstract Background Salmonella enterica serovar Enteritidis (SE) is one of the pathogenic bacteria, which affects poultry production and poses a severe threat to public health. Chicken meat and eggs are the main sources of human salmonellosis. DNA methylation is involved in regulatory processes including gene expression, chromatin structure and genomic imprinting. To understand the methylation regulation in the response to SE inoculation in chicken, the genome-wide DNA methylation profile following SE inoculation was analyzed through whole-genome bisulfite sequencing in the current study. Results There were 185,362,463 clean reads and 126,098,724 unique reads in the control group, and 180,530,750 clean reads and 126,782,896 unique reads in the inoculated group. The methylation density in the gene body was higher than that in the upstream and downstream regions of the gene. There were 8946 differentially methylated genes (3639 hypo-methylated genes, 5307 hyper-methylated genes) obtained between inoculated and control groups. Methylated genes were mainly enriched in immune-related Gene Ontology (GO) terms and metabolic process terms. Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, FoxO signaling pathway, Wnt signaling pathway and several metabolism-related pathways were significantly enriched. The density of differentially methylated cytosines in miRNAs was the highest. HOX genes were widely methylated. Conclusions The genome-wide DNA methylation profile in the response to SE inoculation in chicken was analyzed. SE inoculation promoted the DNA methylation in the chicken cecum and caused methylation alteration in immune- and metabolic- related genes. Wnt signal pathway, miRNAs and HOX gene family may play crucial roles in the methylation regulation of SE inoculation in chicken. The findings herein will deepen the understanding of epigenetic regulation in the response to SE inoculation in chicken.


2020 ◽  
Vol 19 ◽  
pp. 153303382098379
Author(s):  
Xiying Yu ◽  
Ying Teng ◽  
Xingran Jiang ◽  
Hui Yuan ◽  
Wei Jiang

Background: Cancer stem cells (CSCs) are considered the main cause of cancer recurrence and metastasis, and DNA methylation is involved in the maintenance of CSCs. However, the methylation profile of esophageal CSCs remains unknown. Methods: Side population (SP) cells were isolated from esophageal squamous cell carcinoma (ESCC) cell lines KYSE150 and EC109. Sphere-forming cells were collected from human primary esophageal cancer cells. SP cells and sphere-forming cells were used as substitutes for cancer stem-like cells. We investigated the genome-wide DNA methylation profile in esophageal cancer stem-like cells using reduced representation bisulfite sequencing (RRBS). Results: Methylated cytosine (mC) was found mostly in CpG dinucleotides, located mostly in the intronic, intergenic, and exonic regions. Forty intersected differentially methylated regions (DMRs) were identified in these 3 groups of samples. Thirteen differentially methylated genes with the same alteration trend were detected; these included OTX1, SPACA1, CD163L1, ST8SIA2, TECR, CADM3, GRM1, LRRK1, CHSY1, PROKR2, LINC00658, LOC100506688, and NKD2. DMRs covering ST8SIA2 and GRM1 were located in exons. These differentially methylated genes were involved in 10 categories of biological processes and 3 cell signaling pathways. Conclusions: When compared to non-CSCs, cancer stem-like cells have a differential methylation status, which provides an important biological base for understanding esophageal CSCs and developing therapeutic targets for esophageal cancer.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei-Ying Zeng ◽  
Yu-Rong Tan ◽  
Sheng-Feng Long ◽  
Zu-Dong Sun ◽  
Zhen-Guang Lai ◽  
...  

Abstract Background Bean pyralid is one of the major leaf-feeding insects that affect soybean crops. DNA methylation can control the networks of gene expressions, and it plays an important role in responses to biotic stress. However, at present the genome-wide DNA methylation profile of the soybean resistance to bean pyralid has not been reported so far. Results Using whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq), we analyzed the highly resistant material (Gantai-2-2, HRK) and highly susceptible material (Wan82–178, HSK), under bean pyralid larvae feeding 0 h and 48 h, to clarify the molecular mechanism of the soybean resistance and explore its insect-resistant genes. We identified 2194, 6872, 39,704 and 40,018 differentially methylated regions (DMRs), as well as 497, 1594, 9596 and 9554 differentially methylated genes (DMGs) in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48 comparisons, respectively. Through the analysis of global methylation and transcription, 265 differentially expressed genes (DEGs) were negatively correlated with DMGs, there were 34, 49, 141 and 116 negatively correlated genes in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48, respectively. The MapMan cluster analysis showed that 114 negatively correlated genes were clustered in 24 pathways, such as protein biosynthesis and modification; primary metabolism; secondary metabolism; cell cycle, cell structure and component; RNA biosynthesis and processing, and so on. Moreover, CRK40; CRK62; STK; MAPK9; L-type lectin-domain containing receptor kinase VIII.2; CesA; CSI1; fimbrin-1; KIN-14B; KIN-14 N; KIN-4A; cytochrome P450 81E8; BEE1; ERF; bHLH25; bHLH79; GATA26, were likely regulatory genes involved in the soybean responses to bean pyralid larvae. Finally, 5 DMRs were further validated that the genome-wide DNA data were reliable through PS-PCR and 5 DEGs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. The results showed an excellent agreement with deep sequencing. Conclusions Genome-wide DNA methylation profile of soybean response to bean pyralid was obtained for the first time. Several specific DMGs which participated in protein kinase, cell and organelle, flavonoid biosynthesis and transcription factor were further identified to be likely associated with soybean response to bean pyralid. Our data will provide better understanding of DNA methylation alteration and their potential role in soybean insect resistance.


2020 ◽  
Author(s):  
Yuanmei Wang ◽  
Liying Liu ◽  
Min Li ◽  
Lili Lin ◽  
Pengcheng Su ◽  
...  

Abstract Background: Salmonella enterica serovar Enteritidis (SE) is one of the pathogenic bacteria, which affects poultry production and poses a severe threat to public health. Chicken meat and eggs are the main sources of human salmonellosis. DNA methylation is involved in regulatory processes including gene expression, chromatin structure and genomic imprinting. To understand the methylation regulation in the response to SE inoculation in chicken, the genome-wide DNA methylation profile following SE inoculation was analyzed through whole-genome bisulfite sequencing in the current study.Results: There were 185,362,463 clean reads and 126,098,724 unique reads in the control group, and 180,530,750 clean Reads and 126,782,896 unique reads in the inoculated group. The methylation density in the gene body was higher than that in the upstream and downstream regions of the gene. There were 8,946 differentially methylated genes (3,639 hypo-methylated genes, 5,307 hyper-methylated genes) obtained between inoculated and control groups. Methylated genes were mainly enriched in immune-related Gene Ontology (GO) terms and metabolic process terms. Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, FoxO signaling pathway, Wnt signaling pathway and several metabolism-related pathways were significantly enriched. The density of differentially methylated cytosines in miRNAs was the highest. HOX genes were widely methylated.Conclusions: The genome-wide DNA methylation profile in the response to SE inoculation in chicken was analyzed. SE inoculation promoted the DNA methylation in the chicken cecum and caused methylation alteration in immune- and metabolic- related genes. Wnt signal pathway, miRNAs and HOX gene family may play crucial roles in the methylation regulation of SE inoculation in chicken. The findings herein will deepen the understanding of epigenetic regulation in the response to SE inoculation in chicken.


2018 ◽  
Vol 45 (5) ◽  
pp. 1999-2008 ◽  
Author(s):  
Haiqiang Yao ◽  
Shanlan Mo ◽  
Ji Wang ◽  
Yingshuai Li ◽  
Chong-Zhi Wang ◽  
...  

Background/Aims: Metabolic diseases are leading health concerns in today’s global society. In traditional Chinese medicine (TCM), one body type studied is the phlegm-dampness constitution (PC), which predisposes individuals to complex metabolic disorders. Genomic studies have revealed the potential metabolic disorders and the molecular features of PC. The role of epigenetics in the regulation of PC, however, is unknown. Methods: We analyzed a genome-wide DNA methylation in 12 volunteers using Illumina Infinium Human Methylation450 BeadChip on peripheral blood mononuclear cells (PBMCs). Eight volunteers had PC and 4 had balanced constitutions. Results: Methylation data indicated a genome-scale hyper-methylation pattern in PC. We located 288 differentially methylated probes (DMPs). A total of 256 genes were mapped, and some of these were metabolic-related. SQSTM1, DLGAP2 and DAB1 indicated diabetes mellitus; HOXC4 and SMPD3, obesity; and GRWD1 and ATP10A, insulin resistance. According to Ingenuity Pathway Analysis (IPA), differentially methylated genes were abundant in multiple metabolic pathways. Conclusion: Our results suggest the potential risk for metabolic disorders in individuals with PC. We also explain the clinical characteristics of PC with DNA methylation features.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 214.1-214
Author(s):  
I. Arias de la Rosa ◽  
M. D. López Montilla ◽  
J. Rodríguez ◽  
E. Ballester ◽  
C. Torres-Granados ◽  
...  

Background:Cardiovascular risk factors are increased in Psoriatic Arthritis (PsA). In fact, around 60% out of PsA patients display insulin resistance (IR), a hallmark of metabolic syndrome, which might significantly contribute to the cardiovascular disease. Latest studies suggested that inflammatory and metabolic disorders may be under epigenetic control, including DNA methylation. DNA methylation is an unexplored area in the field of PsA.Objectives:To study the alterations in the genome-wide DNA methylation profile of CD4+T cells from PsA patients and its relationship with its pathology and the risk of cardiovascular comorbidity.Methods:Twenty healthy controls (HC) and 20 PsA patients were included in the study. PsA patients were classified into insulin resistant and non-insulin resistant according to HOMA-IR index. CD4+T lymphocytes were isolated from peripheral blood by positive immunomagnetic selection. The Illumina Infinium MethylationEPIC Beadchip was used to obtain DNA methylation profiles across approximately 850,000 CpGs (TSS1500, TSS200, 5UTR, 3UTR, first exon, gene body). Beta values (β) estimating methylation levels were obtained at each CpG site, and differentially methylated genes (DMG) between PsA and HC were identified. Functional classification of these genes was carried out through gene ontology analysis (PANTHER database). Gene expression analysis of the selected genes was also evaluated by RT-PCR. Vascular parameters including carotid intima-media thickness (cIMT) and endothelial function was analyzed by ecodoppler and periflux respectively.Results:The genome-wide methylation analysis identified 112 DMGs including 41 hypomethylated and 71 hypermethylated. These differentially methylated genes were enriched with several signaling pathways and disease categories including immune response, metabolic processes, oxidative stress, vascular and inflammatory pathways. The altered gene expression of selected genes with altered methylation levels in PsA was also validated. Correlation and association analysis of these DMGs with clinical and analytical variables, cardiovascular risk factors and endothelial microvascular function revealed that the degree of methylation of these genes was significantly associated with cIMT (IGF1R, NDRG3, SMYD3, HLA-DRB1, WDR70), arterial pressure (METT5D1, NRDG3, ADAM17, SMYD3, WNK1, CBX1), insulin resistance (AKAP13, SEMA6D, PLCB1), altered lipid profile and atherogenic index (MYBL1, METT5D1, MAN2A1, SLC1A7, SEMA6D, PLCB1, TLK1, SDK1, CBX1), inflammation (MYBL1, NDUFA5, METT5D1, SEMA6D, PLCB1, TLK1), and endothelial dysfunction (ADAMST10, GPCPD1, CCDC88A). In addition, this analysis also identified 435 DMGs including 280 hypomethylated and 155 hypermethylated in CD4+T cells from IR-PsA vs non IR-PsA patients. Between these two groups of PsA patients, CHUK, SERINC1, RUNX1, TTYH2, TXNDC11, FAF1, BICD1, SCD5, PDE5A, FAS, NFIA and GRP75 displayed the most significantly altered methylation, suggesting the role of these genes in the metabolic complications associated with PsA.Conclusion:These findings help our understanding of the pathogenesis of PsA and advance epigenetic studies in regards to this disease and the cardiometabolic comorbidities associated. Funded by ISCIII (PI17/01316 and RIER RD16/0012/0015) co-funded with FEDER.Disclosure of Interests:Iván Arias de la Rosa: None declared, María Dolores López Montilla Speakers bureau: Celgene, Javier Rodríguez: None declared, Esteban Ballester: None declared, Carmen Torres-Granados: None declared, Carlos Perez-Sanchez: None declared, Maria del Carmen Abalos-Aguilera: None declared, Gómez García Ignacio: None declared, Desiree Ruiz: None declared, Alejandra M. Patiño-Trives: None declared, María Luque-Tévar: None declared, Eduardo Collantes-Estévez Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE, Lilly, Bristol and Celgene., Chary Lopez-Pedrera Grant/research support from: ROCHE and Pfizer., Alejandro Escudero Contreras Grant/research support from: ROCHE and Pfizer, Speakers bureau: ROCHE, Lilly, Bristol and Celgene., Nuria Barbarroja Puerto Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE and Celgene.


2020 ◽  
Vol 21 (22) ◽  
pp. 8453
Author(s):  
Ying-peng Hua ◽  
Ting Zhou ◽  
Jin-yong Huang ◽  
Cai-peng Yue ◽  
Hai-xing Song ◽  
...  

Improving crop nitrogen (N) limitation adaptation (NLA) is a core approach to enhance N use efficiency (NUE) and reduce N fertilizer application. Rapeseed has a high demand for N nutrients for optimal plant growth and seed production, but it exhibits low NUE. Epigenetic modification, such as DNA methylation and modification from small RNAs, is key to plant adaptive responses to various stresses. However, epigenetic regulatory mechanisms underlying NLA and NUE remain elusive in allotetraploid B. napus. In this study, we identified overaccumulated carbohydrate, and improved primary and lateral roots in rapeseed plants under N limitation, which resulted in decreased plant nitrate concentrations, enhanced root-to-shoot N translocation, and increased NUE. Transcriptomics and RT-qPCR assays revealed that N limitation induced the expression of NRT1.1, NRT1.5, NRT1.7, NRT2.1/NAR2.1, and Gln1;1, and repressed the transcriptional levels of CLCa, NRT1.8, and NIA1. High-resolution whole genome bisulfite sequencing characterized 5094 differentially methylated genes involving ubiquitin-mediated proteolysis, N recycling, and phytohormone metabolism under N limitation. Hypermethylation/hypomethylation in promoter regions or gene bodies of some key N-metabolism genes might be involved in their transcriptional regulation by N limitation. Genome-wide miRNA sequencing identified 224 N limitation-responsive differentially expressed miRNAs regulating leaf development, amino acid metabolism, and plant hormone signal transduction. Furthermore, degradome sequencing and RT-qPCR assays revealed the miR827-NLA pathway regulating limited N-induced leaf senescence as well as the miR171-SCL6 and miR160-ARF17 pathways regulating root growth under N deficiency. Our study provides a comprehensive insight into the epigenetic regulatory mechanisms underlying rapeseed NLA, and it will be helpful for genetic engineering of NUE in crop species through epigenetic modification of some N metabolism-associated genes.


2018 ◽  
Vol 50 (9) ◽  
pp. 714-723 ◽  
Author(s):  
Xiaolong Zhou ◽  
Songbai Yang ◽  
Feifei Yan ◽  
Ke He ◽  
Ayong Zhao

DNA methylation is an important epigenetic modification involved in the estrous cycle and the regulation of reproduction. Here, we investigated the genome-wide profiles of DNA methylation in porcine ovaries in proestrus and estrus using methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in intergenic and intron regions. The methylation levels of coding regions were higher than those of the 5′- and 3′-flanking regions of genes. There were 4,813 differentially methylated regions (DMRs) of CpG islands in the estrus vs. proestrus ovarian genomes. Additionally, 3,651 differentially methylated genes (DMGs) were identified in pigs in estrus and proestrus. The DMGs were significantly enriched in biological processes and pathways related to reproduction and hormone regulation. We identified 90 DMGs associated with regulating reproduction in pigs. Our findings can serve as resources for DNA methylome research focused on porcine ovaries and further our understanding of epigenetically regulated reproduction in mammals.


2020 ◽  
Author(s):  
Yuanmei Wang ◽  
Liying Liu ◽  
Min Li ◽  
Lili Lin ◽  
Pengcheng Su ◽  
...  

Abstract Background: Salmonella enterica serovar Enteritidis (SE) is one of the pathogenic bacteria, which affects poultry production and poses severe threat to public health. Chicken meat and egg are the main source of SE. DNA methylation, an important epigenetic modification, involves in regulatory processes including gene expression, chromatin structure and genomic imprinting. To understand the methylation regulation in response to SE inoculation in chicken, the genome-wide DNA methylation profile following SE inoculation was analyzed through whole genome bisulfite sequencing in the current study. Results: There were 185,362,463 clean reads and 126,098,724 unique reads in the control group, and 180,530,750 clean Reads, 126,782,896 unique reads in the inoculated group. We found that the methylation density in gene body was higher than that in the upstream and downstream regions of gene. There were 8,946 differentially methylated genes (3,639 hypo-methylated genes, 5,307 hyper-methylated genes) obtained between inoculated and control groups. Methylated genes were mainly enriched in immune-related Gene Ontology (GO) terms and metabolic process terms. Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, FoxO signaling pathway, Wnt signaling pathway and several metabolism-related pathways were significantly enriched. The density of differentially methylated cytosines in miRNAs was the highest. HOX genes were widely methylated and mainly distributed in Chr2 and 7. Conclusions: We firstly analyzed the genome-wide DNA methylation in the response to SE inoculation in chicken. SE inoculation promoted the DNA methylation in chicken cecum and caused methylation alteration in immune- and metabolic- related genes. Wnt signal pathway, miRNAs and HOX gene family may play a crucial role in the methylation regulation of SE infection in chicken. The findings herein will deepen the understanding of epigenetic regulation in the response to SE inoculation in chicken.


2020 ◽  
Author(s):  
Kristjan H. Gretarsson ◽  
Jamie A. Hackett

ABSTRACTEarly mammalian development entails genome-wide epigenome remodeling, including DNA methylation erasure and reacquisition, which facilitates developmental competence. To uncover the mechanisms that orchestrate DNA methylation (DNAme) dynamics, we coupled a single-cell ratiometric DNAme reporter with unbiased CRISPR screening in ESC. We identify key genes and regulatory pathways that drive global DNA hypomethylation, and characterise roles for Cop1 and Dusp6. We also identify Dppa2 and Dppa4 as essential safeguards of focal epigenetic states. In their absence, developmental genes and evolutionary-young LINE1 elements, which DPPA2 specifically binds, lose H3K4me3 and gain ectopic de novo DNA methylation in pluripotent cells. Consequently, lineage-associated genes (and LINE1) acquire a repressive epigenetic memory, which renders them incompetent for activation during future lineage-specification. Dppa2/4 thereby sculpt the pluripotent epigenome by facilitating H3K4me3 and bivalency to counteract de novo methylation; a function co-opted by evolutionary young LINE1 to evade epigenetic decommissioning.


Sign in / Sign up

Export Citation Format

Share Document