scholarly journals The Adverse Impact of Tumor Microenvironment on NK-Cell

2021 ◽  
Vol 12 ◽  
Author(s):  
Ziming Hu ◽  
Xiuxiu Xu ◽  
Haiming Wei

NK cells are considered an important component of innate immunity, which is the first line of defensing against tumors and viral infections in the absence of prior sensitization. NK cells express an array of germline-encoded receptors, which allow them to eliminate abnormal cells and were previously considered a homogenous population of innate lymphocytes, with limited phenotypic and functional diversity. Although their characteristics are related to their developmental origins, other factors, such as tumors and viral infections, can influence their phenotype. Here, we provide an overview of NK cells in the context of the tumor microenvironment, with a primary focus on their phenotypes, functions, and roles in tumor micro-environment. A comprehensive understanding of NK cells in the tumor microenvironment will provide a theoretical basis for the development of NK cell immunotherapy.

Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 573 ◽  
Author(s):  
Donal O’Shea ◽  
Andrew E. Hogan

Natural killer (NK) cells are a population of lymphocytes which classically form part of the innate immune system. They are defined as innate lymphocytes, due to their ability to kill infected or transformed cells without prior activation. In addition to their cytotoxic abilities, NK cells are also rapid producers of inflammatory cytokines such as interferon gamma (IFN-γ) and are therefore a critical component of early immune responses. Due to these unique abilities, NK cells are a very important component of host protection, especially anti-tumour and anti-viral immunity. Obesity is a worldwide epidemic, with over 600 million adults and 124 million children now classified as obese. It is well established that individuals who are obese are at a higher risk of many acute and chronic conditions, including cancer and viral infections. Over the past 10 years, many studies have investigated the impact of obesity on NK cell biology, detailing systemic dysregulation of NK cell functions. More recently, several studies have investigated the role of NK cells in the homeostasis of adipose tissue and the pathophysiology of obesity. In this review, we will discuss in detail these studies and focus on emerging data detailing the metabolic mechanisms altering NK cells in obesity.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 557
Author(s):  
Xuewen Deng ◽  
Hiroshi Terunuma ◽  
Mie Nieda

Natural killer (NK) cells are cytotoxic immune cells with an innate capacity for eliminating cancer cells and virus- infected cells. NK cells are critical effector cells in the immunosurveillance of cancer and viral infections. Patients with low NK cell activity or NK cell deficiencies are predisposed to increased risks of cancer and severe viral infections. However, functional alterations of human NK cells are associated with lifestyles and aging. Personal lifestyles, such as cigarette smoking, alcohol consumption, stress, obesity, and aging are correlated with NK cell dysfunction, whereas adequate sleep, moderate exercise, forest bathing, and listening to music are associated with functional healthy NK cells. Therefore, adherence to a healthy lifestyle is essential and will be favorable for immunosurveillance of cancer and viral infections with healthy NK cells.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A834-A834
Author(s):  
Xue Yao ◽  
Sandro Matosevic

BackgroundThe effectiveness of natural killer (NK) cell-based immunotherapy against solid tumors is limited by the lack of specific antigens and the immunosuppressive tumor microenvironment (TME). Glioblastoma multiforme (GBM) is one such heavily immunosuppressive tumor that has been particularly hard to target and remains without a viable treatment. The development of novel approaches to enhance the efficacy of NK cells against GBM is urgently needed. NK cell engagers (NKCE) have been developed to enhance the efficacy of NK cell therapy.MethodsTo improve the clinical efficacy of NK cell therapy, we are developing a new generation of multi-specific killer engagers, which consists of a neoantigen-targeting moiety, together with cytokine and chemokine-producing domains. Neoantigens are new antigens formed specifically in tumor cells due to genome mutations, making them highly specific tools to target tumor cells. Our engager has been designed to target Wilms' tumor-1 (WT-1), a highly specific antigen overexpressed in GBM among other solid tumors. This is done through the generation of an scFv specific targeting the complex of WT-1126-134/HLA-A*02:01 on the surface of GBM. On the NK cell side, the engager is designed to target the activating receptor NKp46. Incorporation of the cytokine IL-15 within the engager supports the maturation, persistence, and expansion of NK cells in vivo while favoring their proliferation and survival in the tumor microenvironment. Additionally, our data indicated that the chemokine CXCL10 plays an important role in the infiltration of NK cells into GBM, however, GBM tumors produce low levels of this chemokine. Incorporation of a CXCL10-producing function into our engager supports intratumoral NK cell trafficking by promoting, through their synthetic production, increased levels of CXCL10 locally in the tumor microenvironment.ResultsCollectively, this has resulted in a novel multifunctional NK cell engager, combining neoantigen-cytokine-chemokine elements fused to an activating domain-specific to NK cells, and we have investigated its ability to support and enhance NK cell-mediated cytotoxicity against solid tumors in vitro and in vivo against patient-derived GBM models. The multi-specific engager shows both high tumor specificity, as well as the ability to overcome NK cell dysfunction encountered in the GBM TME.ConclusionsWe hypothesize that taking advantage of our multi-functional engager, NK cells will exhibit superior ex vivo expansion, infiltration, and antitumor activity in the treatment of GBM and other solid tumors.


Author(s):  
Ethan G Aguilar ◽  
Cordelia Dunai ◽  
Sean J. Judge ◽  
Anthony Elston Zamora ◽  
Lam T. Khuat ◽  
...  

Natural Killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class I molecules resulting in differential responses upon activation in a process called "licensing" or "arming". NK cells expressing receptors that bind self-MHC are considered licensed due to augmented effector lytic function capability compared to unlicensed subsets. However, we demonstrated unlicensed NK subsets instead positively regulate the adaptive T cell response during viral infections due to localization and cytokine production. We demonstrate here that the differential effects of the two types of NK subsets is contingent on the environment using viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) MCMV leads to a loss of licensing-associated differences as compared to mice with low-dose infection, as the unlicensed NK subset no longer localized in lymph nodes (LN), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled with the phenotypes of both human and mouse NK cells in a HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to effects of subset depletion in T-replete models, the licensed NK cell subsets still dominated anti-viral responses post-HSCT. Overall, our results highlight the intricate tuning of the NK cells and how it impacts overall immune responses with regard to licensing patterns, as it is dependent on the level of stimulation and their activation status.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1363
Author(s):  
Elena V. Abakushina ◽  
Liubov I. Popova ◽  
Andrey A. Zamyatnin ◽  
Jens Werner ◽  
Nikolay V. Mikhailovsky ◽  
...  

In the last decade, an impressive advance was achieved in adoptive cell therapy (ACT), which has improved therapeutic potential and significant value in promising cancer treatment for patients. The ACT is based on the cell transfer of dendritic cells (DCs) and/or immune effector cells. DCs are often used as vaccine carriers or antigen-presenting cells (APCs) to prime naive T cells ex vivo or in vivo. Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are used as major tool effector cells for ACT. Despite the fact that NK cell immunotherapy is highly effective and promising against many cancer types, there are still some limitations, including insignificant infiltration, adverse conditions of the microenvironment, the immunosuppressive cellular populations, and the low cytotoxic activity in solid tumors. To overcome these difficulties, novel methods of NK cell isolation, expansion, and stimulation of cytotoxic activity should be designed. In this review, we discuss the basic characteristics of DC vaccines and NK cells as potential adoptive cell preparations in cancer therapy.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 841-846 ◽  
Author(s):  
MR Silva ◽  
R Hoffman ◽  
EF Srour ◽  
JL Ascensao

Abstract Human natural killer (NK) cells comprise 10% to 15% of peripheral blood mononuclear cells and have an important role in immune responses against tumors, viral infections, and graft rejection. NK cells originate in bone marrow (BM), but their progenitors and lineage development have not been completely characterized. We studied the generation of NK cells from purified CD34+HLADR- and CD34+HLADR+ BM progenitors and the influence of various cytokines on their production. We show that CD3-CD56+ cytotoxic NK cells can develop from both progenitors populations when interleukin-2 (IL-2) is present in an in vitro suspension culture system containing IL-1 alpha and stem cell factor. Up to 83.8% and 98.6% CD3-CD56+ cells were detected in CD34+HLADR- and CD34+DR+ cultures, respectively, after 5 weeks of culture; significant numbers of NK cells were first detected after 2 weeks. Cytotoxic activity paralleled NK cell numbers; up to 70% specific lysis at an effector:target ratio of 10:1 was observed at 5 weeks. IL-7 also triggered development of CD3-CD56+ cells from these immature progenitors (up to 24% and 55% appeared in CD34+HLADR- and CD34+HLADR+ cultures, respectively). Our data suggest that BM stromas are not necessary for NK cell development and that IL-2 remains essential for this lineage development and differentiation.


2020 ◽  
Vol 9 (1) ◽  
pp. 143 ◽  
Author(s):  
Cinzia Fionda ◽  
Helena Stabile ◽  
Cristina Cerboni ◽  
Alessandra Soriani ◽  
Angela Gismondi ◽  
...  

Transforming growth factor (TGF)-β is a central immunosuppressive cytokine within tumor microenvironment inhibiting the expansion and function of major cellular components of adaptive and innate immune system. Among them, compelling evidence has demonstrated that TGF-β is a key regulator of natural killer (NK) cells, innate lymphoid cells (ILCs) with a critical role in immunosurveillance against different kinds of cancer cells. A TGF-β rich tumor microenvironment blocks NK cell activity at multiple levels. This immunosuppressive factor exerts direct regulatory effects on NK cells including inhibition of cytokine production, alteration of activating/inhibitory receptor expression, and promotion of the conversion into non cytotoxic group I ILC (ILC1). Concomitantly, TGF-β can render tumor cells less susceptible to NK cell-mediated recognition and lysis. Indeed, accumulating evidence suggest that changes in levels of NKG2D ligands, mainly MICA, as well as an increase of immune checkpoint inhibitors (e.g., PD-L1) and other inhibitory ligands on cancer cells significantly contribute to TGF-β-mediated suppression of NK cell activity. Here, we will take into consideration two major mechanisms underlying the negative regulation of ILC function by TGF-β in cancer. First, we will address how TGF-β impacts the balance of signals governing NK cell activity. Second, we will review recent advances on the role of this cytokine in driving ILC plasticity in cancer. Finally, we will discuss how the development of therapeutic approaches blocking TGF-β may reverse the suppression of host immune surveillance and improve anti-tumor NK cell response in the clinic.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3542
Author(s):  
Joanna Domagala ◽  
Mieszko Lachota ◽  
Marta Klopotowska ◽  
Agnieszka Graczyk-Jarzynka ◽  
Antoni Domagala ◽  
...  

NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Melissa Mavers ◽  
Alice Bertaina

Natural killer (NK) cells are a population of cytotoxic innate lymphocytes that evolved prior to their adaptive counterparts and constitute one of the first lines of defense against infected/mutated cells. Several studies have shown that in patients with acute leukemia given haploidentical hematopoietic stem cell transplantation, donor-derived NK cells play a key role in the eradication of cancer cells. The antileukemic effect is mostly related to the presence of “alloreactive” NK cells, that is, mature KIR+ NK cells that express inhibitory KIR mismatched with HLA class I (KIR-L) of the patient. A genotypic analysis detecting KIR B haplotype and the relative B content is an additional donor selection criterion. These data provided the rationale for implementing phase I/II clinical trials of adoptive infusion of either selected or ex vivo-activated NK cells, often from an HLA-mismatched donor. In this review, we provide a historical perspective on the role played by NK cells in patients with acute leukemia, focusing also on the various approaches to adoptive NK cell therapy and the unresolved issues therein. In addition, we outline new methods to enhance NK activity, including anti-KIR monoclonal antibody, bi-/trispecific antibodies linking NK cells to cytokines and/or target antigens, and CAR-engineered NK cells.


Sign in / Sign up

Export Citation Format

Share Document