scholarly journals Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Luo ◽  
Jing Xu ◽  
Jianhua Yu ◽  
Ping Yi

Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.

2019 ◽  
Vol 19 (4) ◽  
pp. 473-486 ◽  
Author(s):  
Katarzyna Bednarska-Szczepaniak ◽  
Damian Krzyżanowski ◽  
Magdalena Klink ◽  
Marek Nowak

Background: Adenosine released by cancer cells in high amounts in the tumour microenvironment is one of the main immunosuppressive agents responsible for the escape of cancer cells from immunological control. Blocking adenosine receptors with adenosine analogues and restoring immune cell activity is one of the methods considered to increase the effectiveness of anticancer therapy. However, their direct effects on cancer cell biology remain unclear. Here, we determined the effect of adenosine analogues on the response of cisplatinsensitive and cisplatin-resistant ovarian cancer cells to cisplatin treatment. Methods: The effects of PSB 36, DPCPX, SCH58261, ZM 241385, PSB603 and PSB 36 on cisplatin cytotoxicity were determined against A2780 and A2780cis cell lines. Quantification of the synergism/ antagonism of the compounds cytotoxicity was performed and their effects on the cell cycle, apoptosis/necrosis events and cisplatin incorporation in cancer cells were determined. Results: PSB 36, an A1 receptor antagonist, sensitized cisplatin-resistant ovarian cancer cells to cisplatin from low to high micromolar concentrations. In contrast to PSB 36, the A2AR antagonist ZM 241385 had the opposite effect and reduced the influence of cisplatin on cancer cells, increasing their resistance to cisplatin cytotoxicity, decreasing cisplatin uptake, inhibiting cisplatin-induced cell cycle arrest, and partly restoring mitochondrial and plasma membrane potentials that were disturbed by cisplatin. Conclusion: Adenosine analogues can modulate considerable sensitivity to cisplatin of ovarian cancer cells resistant to cisplatin. The possible direct beneficial or adverse effects of adenosine analogues on cancer cell biology should be considered in the context of supportive chemotherapy for ovarian cancer.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Katrin Schlie ◽  
Jaeline E. Spowart ◽  
Luke R. K. Hughson ◽  
Katelin N. Townsend ◽  
Julian J. Lum

Hypoxia is a signature feature of growing tumors. This cellular state creates an inhospitable condition that impedes the growth and function of all cells within the immediate and surrounding tumor microenvironment. To adapt to hypoxia, cells activate autophagy and undergo a metabolic shift increasing the cellular dependency on anaerobic metabolism. Autophagy upregulation in cancer cells liberates nutrients, decreases the buildup of reactive oxygen species, and aids in the clearance of misfolded proteins. Together, these features impart a survival advantage for cancer cells in the tumor microenvironment. This observation has led to intense research efforts focused on developing autophagy-modulating drugs for cancer patient treatment. However, other cells that infiltrate the tumor environment such as immune cells also encounter hypoxia likely resulting in hypoxia-induced autophagy. In light of the fact that autophagy is crucial for immune cell proliferation as well as their effector functions such as antigen presentation and T cell-mediated killing of tumor cells, anticancer treatment strategies based on autophagy modulation will need to consider the impact of autophagy on the immune system.


2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1299 ◽  
Author(s):  
Marek Nowak ◽  
Magdalena Klink

Tumor-associated macrophages (TAMs) constitute the main population of immune cells present in the ovarian tumor microenvironment. These cells are characterized by high plasticity and can be easily polarized by colony-stimulating factor-1, which is released by tumor cells, into an immunosuppressive M2-like phenotype. These cells are strongly implicated in both the progression and chemoresistance of ovarian cancer. The main pro-tumoral function of M2-like TAMs is the secretion of a variety of cytokines, chemokines, enzymes and exosomes that reach microRNAs, directly inducing the invasion potential and chemoresistance of ovarian cancer cells by triggering their pro-survival signaling pathways. The M2-like TAMs are also important players in the metastasis of ovarian cancer cells in the peritoneum through their assistance in spheroid formation and attachment of cancer cells to the metastatic area—the omentum. Moreover, TAMs interplay with other immune cells, such as lymphocytes, natural killer cells, and dendritic cells, to inhibit their responsiveness, resulting in the development of immunosuppression. The detrimental character of the M2-like type of TAMs in ovarian tumors has been confirmed by a number of studies, demonstrating the positive correlation between their high level in tumors and low overall survival of patients.


2020 ◽  
Vol 9 (4) ◽  
pp. 1185 ◽  
Author(s):  
Martha Baydoun ◽  
Olivier Moralès ◽  
Céline Frochot ◽  
Colombeau Ludovic ◽  
Bertrand Leroux ◽  
...  

Often discovered at an advanced stage, ovarian cancer progresses to peritoneal carcinoma, which corresponds to the invasion of the serosa by multiple tumor implants. The current treatment is based on the combination of chemotherapy and tumor cytoreduction surgery. Despite the progress and standardization of surgical techniques combined with effective chemotherapy, post-treatment recurrences affect more than 60% of women in remission. Photodynamic therapy (PDT) has been particularly indicated for the treatment of superficial lesions on large surfaces and appears to be a relevant candidate for the treatment of microscopic intraperitoneal lesions and non-visible lesions. However, the impact of this therapy on immune cells remains unclear. Hence, the objective of this study is to validate the efficacy of a new photosensitizer [pyropheophorbide a-polyethylene glycol-folic acid (PS)] on human ovarian cancer cells and to assess the impact of the secretome of PDT-treated cells on human peripheral blood mononuclear cells (PBMC). We show that PS, upon illumination, can induce cell death of different ovarian tumor cells. Furthermore, PDT using this new PS seems to favor activation of the immune response by inducing the secretion of effective cytokines and inhibiting the pro-inflammatory and immunosuppressive ones, as well as releasing extracellular vesicles (EVs) prone to activating immune cells. Finally, we show that PDT can activate CD4+ and CD8+ T cells, resulting in a potential immunostimulating process. The results of this pilot study therefore indicate that PS-PDT treatment may not only be effective in rapidly and directly destroying target tumor cells but also promote the activation of an effective immune response; notably, by EVs. These data thus open up good prospects for the treatment of micrometastases of intraperitoneal ovarian carcinosis which are currently inoperable.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3213
Author(s):  
Alessandra Ferraresi ◽  
Andrea Esposito ◽  
Carlo Girone ◽  
Letizia Vallino ◽  
Amreen Salwa ◽  
...  

Background Ovarian cancer progression and invasiveness are promoted by a range of soluble factors released by cancer cells and stromal cells within the tumor microenvironment. Our previous studies demonstrated that resveratrol (RV), a nutraceutical and caloric restriction mimetic with tumor-suppressive properties, counteracts cancer cell motility induced by stromal IL-6 by upregulating autophagy. Lysophosphatidic acid (LPA), a bioactive phospholipid that shows elevated levels in the tumor microenvironment and the ascites of ovarian cancers, stimulates the growth and tissue invasion of cancer cells. Whether LPA elicits these effects by inhibiting autophagy and through which pathway and whether RV can counteract the same remain obscure. Aims To investigate the molecular pathways involved in LPA-induced ovarian cancer malignancy, particularly focusing on the role of autophagy, and the ability of RV to counteract LPA activity. Results LPA stimulated while RV inhibited ovarian cancer cell migration. Transcriptomic and bioinformatic analyses showed an opposite regulation by LPA and RV of genes linked to epithelial-to-mesenchymal transition (EMT) and autophagy with involvement of the PI3K-AKT, JAK-STAT and Hedgehog (Hh) pathways. LPA upregulated the Hh and EMT members GLI1, BMI-1, SNAIL-1 and TWIST1 and inhibited autophagy, while RV did the opposite. Similar to the inhibitors of the Hh pathway, RV inhibited LPA-induced cancer cell migration and 3D growth of ovarian cancer cells. BMI-1 silencing prevented LPA-induced EMT, restored autophagy and hampered cell migration, resembling the effects of RV. TCGA data analyses indicated that patients with low expression of Hh/EMT-related genes together with active autophagy flux tended to have a better prognosis and this correlates with a more effective response to platinum therapy. In in vitro 3D spheroids, LPA upregulated BMI-1, downregulated autophagy and inhibited platinum toxicity while RV and Hh inhibitors restored autophagy and favored BAX-mediated cell death in response to platinum. Conclusions By inhibiting the Hh pathway and restoration of autophagy, RV counteracts LPA-induced malignancy, supporting its inclusion in the therapy of ovarian cancer for limiting metastasis and chemoresistance.


2019 ◽  
Vol 20 (19) ◽  
pp. 4693 ◽  
Author(s):  
Nina Mallmann-Gottschalk ◽  
Yvonne Sax ◽  
Rainer Kimmig ◽  
Stephan Lang ◽  
Sven Brandau

The adverse prognosis of most patients with ovarian cancer is related to recurrent disease caused by resistance to chemotherapeutic and targeted therapeutics. Besides their direct activity against tumor cells, monoclonal antibodies and tyrosine kinase inhibitors (TKIs) also influence the antitumoral activity of immune cells, which has important implications for the design of immunotherapies. In this preclinical study, we treated different ovarian cancer cell lines with anti-epidermal growth factor receptor (EGFR) TKIs and co-incubated them with natural killer (NK) cells. We studied treatment-related structural and functional changes on tumor and immune cells in the presence of the anti-EGFR antibody cetuximab and investigated NK-mediated antitumoral activity. We show that long-term exposure of ovarian cancer cells to TKIs leads to reduced responsiveness of intrinsically sensitive cancer cells over time. Inversely, neither long-term treatment with TKIs nor cetuximab could overcome the intrinsic resistance of certain ovarian cancer cells to anti-EGFR agents. Remarkably, tumor cells pretreated with anti-EGFR TKIs showed increased sensitivity towards NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In contrast, the cytokine secretion of NK cells was reduced by TKI sensitization. Our data suggest that sensitization of tumor cells by anti-EGFR TKIs differentially modulates interactions with NK cells. These data have important implications for the design of chemo-immuno combination therapies in this tumor entity.


Sign in / Sign up

Export Citation Format

Share Document