scholarly journals Emerging Role of Cancer-Associated Fibroblasts-Derived Exosomes in Tumorigenesis

2022 ◽  
Vol 12 ◽  
Author(s):  
Lushan Peng ◽  
Dan Wang ◽  
Yingying Han ◽  
Tao Huang ◽  
Xiaoyun He ◽  
...  

Cancer-associated fibroblasts (CAFs) are the most important component of the stromal cell population in the tumor microenvironment and play an irreplaceable role in oncogenesis and cancer progression. Exosomes, a class of small extracellular vesicles, can transfer biological information (e.g., proteins, nucleic acids, and metabolites as messengers) from secreting cells to target recipient cells, thereby affecting the progression of human diseases, including cancers. Recent studies revealed that CAF-derived exosomes play a crucial part in tumorigenesis, tumor cell proliferation, metastasis, drug resistance, and the immune response. Moreover, aberrant expression of CAF-derived exosomal noncoding RNAs and proteins strongly correlates with clinical pathological characterizations of cancer patients. Gaining deeper insight into the participation of CAF-derived exosomes in tumorigenesis may lead to novel diagnostic biomarkers and therapeutic targets in human cancers.

2020 ◽  
Vol 22 (1) ◽  
pp. 27
Author(s):  
Ilaria Plantamura ◽  
Alessandra Cataldo ◽  
Giulia Cosentino ◽  
Marilena V. Iorio

Despite its controversial roles in different cancer types, miR-205 has been mainly described as an oncosuppressive microRNA (miRNA), with some contrasting results, in breast cancer. The role of miR-205 in the occurrence or progression of breast cancer has been extensively studied since the first evidence of its aberrant expression in tumor tissues versus normal counterparts. To date, it is known that the expression of miR-205 in the different subtypes of breast cancer is decreasing from the less aggressive subtype, estrogen receptor/progesterone receptor positive breast cancer, to the more aggressive, triple negative breast cancer, influencing metastasis capability, response to therapy and patient survival. In this review, we summarize the most important discoveries that have highlighted the functional role of this miRNA in breast cancer initiation and progression, in stemness maintenance, in the tumor microenvironment, its potential role as a biomarker and its relevance in normal breast physiology—the still open questions. Finally, emerging evidence reveals the role of some lncRNAs in breast cancer progression as sponges of miR-205. Here, we also reviewed the studies in this field.


2018 ◽  
Vol 24 (28) ◽  
pp. 3297-3302 ◽  
Author(s):  
Zhilong Ma ◽  
Min Chen ◽  
Xiaohu Yang ◽  
Bin Xu ◽  
Zhenshun Song ◽  
...  

Cancer-associated fibroblasts (CAFs) are an important cell type present in solid tumor microenvironments, including that of gastric cancer. They play a vital role in the promotion of tumorigenesis, angiogenesis, and cancer progression through paracrine signaling and modulation of the extracellular matrix. However, the exact molecular mechanism underlying the interaction between gastric cancer cells and stromal fibroblasts remains poorly understood. Recent studies have demonstrated that various factors, such as gene and microRNA variations, are involved in this process. This review discusses recent advances in understanding how these factors are regulated in CAFs and how they affect tumor biology, which may improve our understanding of their role in gastric cancer tumorigenesis and progression and provide new promising targets for therapeutic strategies.


Author(s):  
Amina Mohammadalipour ◽  
Sandeep P. Dumbali ◽  
Pamela L. Wenzel

Mesenchymal stromal cell (MSC) metabolism plays a crucial role in the surrounding microenvironment in both normal physiology and pathological conditions. While MSCs predominantly utilize glycolysis in their native hypoxic niche within the bone marrow, new evidence reveals the importance of upregulation in mitochondrial activity in MSC function and differentiation. Mitochondria and mitochondrial regulators such as sirtuins play key roles in MSC homeostasis and differentiation into mature lineages of the bone and hematopoietic niche, including osteoblasts and adipocytes. The metabolic state of MSCs represents a fine balance between the intrinsic needs of the cellular state and constraints imposed by extrinsic conditions. In the context of injury and inflammation, MSCs respond to reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs), such as damaged mitochondria and mitochondrial products, by donation of their mitochondria to injured cells. Through intercellular mitochondria trafficking, modulation of ROS, and modification of nutrient utilization, endogenous MSCs and MSC therapies are believed to exert protective effects by regulation of cellular metabolism in injured tissues. Similarly, these same mechanisms can be hijacked in malignancy whereby transfer of mitochondria and/or mitochondrial DNA (mtDNA) to cancer cells increases mitochondrial content and enhances oxidative phosphorylation (OXPHOS) to favor proliferation and invasion. The role of MSCs in tumor initiation, growth, and resistance to treatment is debated, but their ability to modify cancer cell metabolism and the metabolic environment suggests that MSCs are centrally poised to alter malignancy. In this review, we describe emerging evidence for adaptations in MSC bioenergetics that orchestrate developmental fate decisions and contribute to cancer progression. We discuss evidence and potential strategies for therapeutic targeting of MSC mitochondria in regenerative medicine and tissue repair. Lastly, we highlight recent progress in understanding the contribution of MSCs to metabolic reprogramming of malignancies and how these alterations can promote immunosuppression and chemoresistance. Better understanding the role of metabolic reprogramming by MSCs in tissue repair and cancer progression promises to broaden treatment options in regenerative medicine and clinical oncology.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kamila J. Bienkowska ◽  
Christopher J. Hanley ◽  
Gareth J. Thomas

The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an “activated” myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other “hallmarks of malignancy.” CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yiwen Sang ◽  
Piaoping Kong ◽  
Shizhen Zhang ◽  
Lingyu Zhang ◽  
Ying Cao ◽  
...  

Serum and glucocorticoid-induced protein kinase 1 (SGK1) is a member of the “AGC” subfamily of protein kinases, which shares structural and functional similarities with the AKT family of kinases and displays serine/threonine kinase activity. Aberrant expression of SGK1 has profound cellular consequences and is closely correlated with human cancer. SGK1 is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in the genesis and development of many human cancers. Abnormal expression of SGK1 has been found in tissue and may hopefully become a useful indicator of cancer progression. In addition, SGK1 acts as a prognostic factor for cancer patient survival. This review systematically summarizes and discusses the role of SGK1 as a diagnostic and prognostic biomarker of diverse cancer types; focuses on its essential roles and functions in tumorigenesis, cancer cell proliferation, apoptosis, invasion, metastasis, autophagy, metabolism, and therapy resistance and in the tumor microenvironment; and finally summarizes the current understanding of the regulatory mechanisms of SGK1 at the molecular level. Taken together, this evidence highlights the crucial role of SGK1 in tumorigenesis and cancer progression, revealing why it has emerged as a potential target for cancer therapy.


2020 ◽  
Author(s):  
Lungwani Muungo

Recent transcriptome studies using next-generation sequencing have detected aberrant changes in the expression of noncodingRNAs (ncRNAs) associated with cancer. For prostate cancer, the expression levels of ncRNAs including microRNAsand long noncoding RNAs are strongly associated with diagnosis, carcinogenesis and tumor growth. Moreover, androgenand its cognate receptor, androgen receptor (AR), regulate various signaling pathways for prostate tumor growth. In addition,progression to lethal castration-resistant prostate cancer (CRPC) is also owing to AR function. Systematic analysis ofAR-binding sites and their regulated transcripts revealed that many ncRNAs are widely regulated at the transcriptionallevel. Thus, recent studies provide new insight into the complicated molecular mechanism of prostate cancer progression.This review focused on the role of various ncRNAs in prostate cancer and the association between their expression andCRPC.


Sign in / Sign up

Export Citation Format

Share Document