scholarly journals Experimental Research on Compressive and Shrinkage Properties of ECC Containing Ceramic Wastes Under Different Curing Conditions

2021 ◽  
Vol 8 ◽  
Author(s):  
Yan Xiong ◽  
Yi Yang ◽  
Shuai Fang ◽  
Di Wu ◽  
Yingfeng Tang

Engineered cementitious composites (ECCs) suffer from high shrinkage and low early strength due to large dosage of cementitious materials and slow hydration of fly ash. This study aims to improve compressive properties and reduce drying shrinkage of ECC using ceramic wastes and hydrothermal curing. Experimental results have indicated that ceramic polishing powder (CPP) and recycled ceramic sand (RCS) exert opposite effect on the compressive strength of ECC. Hydrothermal-cured ECC enhances elasticity modulus and compressive strength and reduces later drying shrinkage as compared with that under standard curing. A CPP dosage of 35% and a hydrothermal curing regime with a temperature of 70°C and age of 7 days are recommended for the engineering application of ECC.

2018 ◽  
Vol 65 ◽  
pp. 02001 ◽  
Author(s):  
Siong Kang Lim ◽  
Hock Yong Tiong ◽  
Kai Siong Woon

Rapid drying shrinkage is an important factor in causing cracks of concrete. This research was aimed at studying the effects of Palm Oil Empty Fruited Bunch (POEFB) fibre on the drying shrinkage behaviour and compressive strength of foamed concrete (FC) under two different curing conditions. The adopted curing conditions were air curing and tropical natural weather curing. Two volume fractions of POEFB fibre were used, which were 0.25% and 0.50% based on dry mix weight with 1-2 cm in length. The dimensional stability of the control specimen and POEFB fibre reinforced FCs was obtained by cumulating the measured linear shrinkage or expansion due to different curing conditions. The results from the two different specimens were compared. The results showed that specimens reinforced with POEFB fibre and cured under tropical natural weather condition attained lesser variations of dimensional stability and higher 90-day strength performance index than the reference mix without POEFB fibre. This improvement was attributed to the ability of POEFB fibre to bridge the cement matrix, and irregular wetting process under tropical natural weather curing condition had enabled more production of Calcium Silicate Hydrate gels that gradually blocked the penetration of water into the specimens and increased the compressive strength. It is observed that 11.43% and 4.46% of improvement in 90-day strength performance index were obtained in natural weather cured 0.5% of POEFB fibre reinforced specimen, with corresponded to the reference mix and 0.25% of POEFB fibre reinforced specimens, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1149
Author(s):  
Marcin Górski ◽  
Natalia Wielgus ◽  
Krzysztof Loska ◽  
Michał Kozioł ◽  
Marcin Landrat ◽  
...  

Geopolymers can be treated as an environmentally friendly alternative for concrete and enables utilization of various wastes. This paper focuses on the possibility of application of discarded cathode ray tube (CRT) glass inside a metakaolin-based geopolymer in the form of an aggregate, providing an ecological method of recycling of this hazardous material. The main goal of this paper was to develop an optimal composition of a new geopolymer and to describe its behavior under varying curing conditions. A geopolymer made of different mixtures was subjected to flexural and compressive strength tests. The density, mass loss, temperature changes, and metals leaching were determined as well. The results demonstrated that neither the content of CRT glass nor the curing regime has a significant influence on the mechanical behavior. However, the strength of the geopolymer containing 50% CRT glass by mass increased with time in contrast to a geopolymer with a higher CRT glass content. The development of temperature inside the mixture was dependent on the amount of metakaolin. The concentration of toxic metals in an aqueous extract decreased considerably after the encapsulation of CRT glass inside the geopolymer. The presented results indicate that discarded CRT glass can be considered an aggregate for a metakaolin-based geopolymer. The new material shows high strength and makes the CRT glass safe for the environment.


2014 ◽  
Vol 599 ◽  
pp. 310-314
Author(s):  
Yan Hua Wang ◽  
Jun Cai ◽  
Pin Pin Ding ◽  
Ya Jun Wang

This paper discussed the possibilities of the processed steel slag and rice husk ash in building mortar replace cement. Experimental results show that after suitable mix designs cube compressive strength of composite binders using can meet the building mortar standard. The novel composite cementitious materials need larger water absorption, but their frost resistance, drying shrinkage, sulfate resistance relate to the pure cement varying degrees upgrade.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Haihe Yi ◽  
Chun-xiang Qian

Bacteria-based mineralization is a new technique to use the steel slag. In this article, an experimental examination was performed to find out the steel slag advancement by the addition of the microbial agent that has the possibility to accelerate mineralization ability of bacteria. It is observed that, under natural and CO2 pressure curing conditions, the carbonation rate is significantly raised when microorganisms are added to the steel slag. The increased ratio of microorganisms leads to a better carbonation rate. The reaction products formed by bacteria mineralization were analyzed with the scanning electron microscope (SEM) and X-ray diffraction (XRD), and the amount of reaction products was examined by thermogravimetric analysis. The results show that the compressive strength and carbonation speed rose with the increase in microorganism content. Bacterial could accelerate the rate of carbon sequestration in the mineralization process. The compressive strength of steel slag with 1.5% bacterial could reach up to 51.5 MPa. The micron-sized and roughness mineralization product induced by microorganisms apparently resulted in a denser and compacted structure. The carbon depth increased by 50%, and the content of calcite increased by 3 times. These mineralization products would fill in the pore of steel slag cementitious materials and form the integrated and denser structure which produces more strength.


2015 ◽  
Vol 55 (5) ◽  
pp. 313 ◽  
Author(s):  
Ondřej Holčapek ◽  
Filip Vogel ◽  
Petr Konvalinka

The main objective of this article is to describe the influence of hydrothermal curing conditions in an autoclave device (different pressure and temperature), which took place at various ages of a fresh mixture (cement matrix – CM, and fibre-reinforced cement matrix – FRCM), on textile reinforced concrete production. The positive influence of autoclaving has been evaluated through the results of physical and mechanical testing – compressive strength, flexural strength, bulk density and dynamic modulus of elasticity, which have been measured on specimens with the following dimensions: 40×40×160mm<sup>3</sup>. In addition, it has been found that increasing the pressure and temperature resulted in higher values of measured characteristics. The results indicate that the most suitable surrounding conditions are 0.6MPa, and 165 °C at the age of 21 hours; the final compressive strength of cement matrix is 134.3MPa and its flexural strength is 25.9MPa (standard cured samples achieve 114.6MPa and 15.7MPa). Hydrothermal curing is even more effective for cement matrix reinforced by steel fibres (for example, the compressive strength can reach 177.5MPa, while laboratory-cured samples achieve a compressive strength of 108.5MPa).


2014 ◽  
Vol 925 ◽  
pp. 334-338
Author(s):  
Omer Abdalla Alawad ◽  
Abdulrahman Alhoziamy ◽  
Mohd Saleh Jaafar ◽  
Abdulaziz Al-Negheimish ◽  
Farah Noor Abdul Aziz

Supplementary cementitious materials provide economic and environmental advantages in concrete industry. In this study, natural ground dune sand (GDS) was used as cement replacement material to fabricate mortar specimens. Ordinary Portland cement was replaced by GDS at five levels of replacement (0, 10, 20, 30, and 40 %) by weight. The cast mortar specimens were cured under normal and autoclave curing conditions. Compressive strength, drying shrinkage and resistance to sulfate attack were investigated. Results showed that the compressive strength under normal curing decreased as the level of replacement increased. However, under autoclave curing compressive strength increased as the content of GDS increased with 30% being the optimum replacement level. Autoclave curing decreased the drying shrinkage of plain and GDS blended mixtures by about 70% compared to control mixture cured under normal curing. Up to 270 days, no sulfate attack was observed on the GDS blended mixtures regardless of the replacement level. The use of GDS to reduce the Portland cement consumption can have a significant impact on the sustainability and economy of concrete construction.


2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nur Hafizah A. Khalid ◽  
Mohd Warid Hussin ◽  
Mohammad Ismail ◽  
Mohamed A. Ismail ◽  
Azman Mohamed ◽  
...  

Polymer concrete is produced from polymer binder, aggregates, and filler. Its curing follows the polymerization process once polymer additive is added, and can be accelerated through post-curing. In this study, the Orthophthalic- and Isophthalic-based polymer concrete (Ortho-PC and Iso-PC) were cured and investigated at different curing temperature (30oC, 50oC and 70oC) and period (1, 3, 6, 16, 24 hours) to complete the compressive strength development. Effect of curing temperature and period on apparent density, compressive strength, and morphology properties were investigated. The outcomes exhibited that all specimens had achieved full compressive strength within 6 hours of curing time at both 50oC and 70oC. When cured at 30oC, this went up to more than 16 hours of curing period to achieve the same compressive strength. The form of crosslinking at different curing conditions was captured in Scanning Electron Microscope, SEM images. Results also showed that curing temperature and period insignificant affected the apparent density. This study can be used as references to manufacturer, fabricator, and engineers when dealing with polymer concrete which goes for post-curing method as curing process.


Clay Minerals ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 133-152 ◽  
Author(s):  
M.H. Cornejo ◽  
J. Elsen ◽  
C. Paredes ◽  
H. Baykara

AbstractThis contribution is the second part of an in-depth study on the hydration and strength evolution of blended cement pastes at a water to binder (W/B) ratio of 0.3, cured by two different methods. The blended cement pastes showed significant hydration up to 7 days, when almost all of the hydration products had already formed; thereafter, carbonation played an important role up to, and possibly beyond, 91 days. Likewise, the hydration of alite (tricalcium silicate, Ca3SiO5, C3S) proceeded up to 14 days and then started to slow down. However, the hydration of belite (dicalcium silicate, Ca2SiO4, C2S) was affected most strongly, as it nearly ceased, under the air-curing conditions. During hydration, some of the blended cement pastes had a larger calcium hydroxide (CH) content than the unblended (plain) ones. The accelerating effects of the addition of supplementary cementitious materials (SCMs), the air-curing conditions and the low W/B ratio may explain these unusual results. Under these experimental conditions, the water incorporated into hydrates was about 50% of the total amount of water used during full hydration of the cement pastes. The pozzolanic reaction predominated during the early ages, but disappeared as time passed. In contrast, the carbonation reaction increased by consuming ∼45% of the total amount of CH produced after aging for 91 days. Only one blended cement paste reached the compressive strength of the plain cements. The blended cement pastes containing 5% of the zeolitic tuffs, Zeo1 or Zeo2, or 10% of the calcareous siltstone, Limo, developed the greatest compressive strength under the experimental conditions used in this study.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Bong-Suk Cho ◽  
Young-Uk Kim ◽  
Do-Bin Kim ◽  
Se-Jin Choi

This paper investigates the effect of ferronickel slag powder on microhydration heat, flow, compressive strength, and drying shrinkage of mortar. In South Korea, approximately two million tons of ferronickel slag, a by-product of the nickel industry, are produced every year. However, a considerable amount of this by-product is treated as waste and dumped in landfills. Ferronickel slag powder was used to replace Portland cement at a ratio of 15% by binder mass. In addition, the mortar test with other cementitious materials, including blast-furnace slag powder and fly ash, was conducted and compared with the sample containing ferronickel slag powder. According to this investigation, the microhydration heat of mortar and concrete can be reduced with the appropriate use of ferronickel slag powder. In addition, in order to achieve higher concrete compressive strengths, it is apparently advantageous to use the ferronickel slag powder and fly ash together rather than using ferronickel slag powder alone.


2021 ◽  
Vol 7 (4) ◽  
pp. 676-689
Author(s):  
Edgar L. S. Borrero ◽  
Visar Farhangi ◽  
Kazem Jadidi ◽  
Moses Karakouzian

 Considering a constant demand in construction of concrete structures to develop novel approaches for predicting the concert’s properties, a host of investigations were performed on concrete’s mechanical properties and durability under various curing regimes. However, few studies were concerned with evaluating the concrete’s durability using non-destructive concrete surface resistivity tests by applying various curing conditions. The present study compares the influence of different curing regimes on durability and compressive strength of concrete to recommend the most effective curing conditions on concrete’s characteristics.  Five curing conditions including ambient, laboratory, dry oven, wet oven and 7-days were analyzed. Accordingly, a non-destructive concrete surface resistivity test was performed on the concrete specimens using hand-held Wenner Resipod probe meter as a reliable and rapid approach. To analyze specimen’s durability, results of the surface sensitivity tests were correlated to chloride ion penetration rate based on the cylinder specimen dimensions and the degree of chloride ion penetration. The compressive strength tests were conducted on the specimens after 7, 28 and 56 days to determine the effect of curing conditions at different ages. Based on the reported outcomes, applying the wet oven curing regime results in higher compressive strength and durability compared to the other curing conditions. Doi: 10.28991/cej-2021-03091681 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document