scholarly journals Streptococcus thermophilus Attenuates Inflammation in Septic Mice Mediated by Gut Microbiota

2020 ◽  
Vol 11 ◽  
Author(s):  
Fu Han ◽  
Gaofeng Wu ◽  
Yijie Zhang ◽  
Haotian Zheng ◽  
Shichao Han ◽  
...  

Sepsis is a life-threatening organ dysfunction condition caused by a dysregulated host response to infection and lack of effective treatment method. Supplementation of probiotics has emerged as a potential biotherapy for inflammatory diseases in recent years, but its role in protecting viscera against the damage caused by sepsis and the underlying mechanism is poorly understood. Streptococcus thermophilus 19 is one of the most well-studied probiotics, which is selected in this study among seven strains isolated from homemade yogurt due to its optimal ability of suppressing the inflammation response in vitro. It showed significant decrease in the expression of TNF-α, IL-1β, and IL-6 in the co-culture of S. thermophilus 19 and LPS-treated mouse macrophage. The effect of S. thermophilus 19 in mice and the response of mice gut microbiota were subsequently investigated. In LPS-induced septic mouse model, S. thermophilus 19 was highly resistant to LPS and exhibited significantly decreased expressions of inflammatory factors compared to LPS-treated mice. A MiSeq-based 16S rDNA sequence analysis revealed that the decrease of gut microbial diversity in mice intraperitoneally injected with 1 mg/ml LPS were mitigated by the administration of S. thermophilus 19. Fusobacterium significantly decreased during the development of sepsis and rose again after supplement strain 19, while Flavonifractor showed the opposite trend, which demonstrated these two genera were the key bacteria that may function in the mice gut microbiota for alleviation of LPS-induced inflammation reaction. To conclude, S. thermophilus 19 may be a potential candidate for novel biotherapeutic interventions against inflammation caused by sepsis.

2019 ◽  
Author(s):  
Fu Han ◽  
Yijie Zhang ◽  
Xuekang Yang ◽  
Zhuoqun Fang ◽  
Shichao Han ◽  
...  

AbstractSepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in burn patients. Streptococcus thermophilus 19 is a highly effective probiotic, with well-studied health benefits, but its role in protecting viscera against injury caused by sepsis and the underlying mechanism is poorly understood. The goal of this study was to evaluate protection potency of S. thermophilus against inflammation in mice and evaluate the influence of sepsis and S. thermophilus on microbial community. We tested the utility of S. thermophilus 19 in attenuating inflammation in vitro and vivo of LPS-induced sepsis mouse model. We also evaluated the influence of sepsis and S. thermophilus on microbial community. In vitro, S. thermophilus 19 decrease the expression of inflammatory factors. Additionally, in a lipopolysaccharide-induced septic mouse model, mice administered the probiotic 19 was highly resistant to Lps and exhibited decreased expression of inflammatory factors compared to Lps-treated control mice. A MiSeq-based sequence analysis revealed that gut microbiota alterations in mice intraperitoneally injected with 1 mg/ml LPS were mitigated by the administration of oral probiotics 19. Together these findings indicate that S. thermophilus 19 may be a new avenue for interventions against inflammation caused by sepsis and other systemic inflammatory diseases. In an analysis of the gut microbiota of the all group mice, we found that sepsis is associated with gut microbiota and probiotics attenuate the inflammation through remodeling gut microbiota.ImportanceSepsis is life-threatening organ dysfunction which is the leading cause of death in burn patients. Although our understanding of sepsis has increased substantially in recent years, it’s still reported to be the leading cause of death in seriously ill patients. Evidences showed that gut microbiota play an important role in sepsis. Moreover, probiotics have been used to prevent numbers of gut health disorders and alleviate inflammation associated with some human diseases by promoting changes in the gut microbiota composition. Hence, to investigate the mechanism of probiotics in the treatment of sepsis has emerged. The significance of our research is in identifying the role of gut microbiota in sepsis and found an effective probiotic that reduces inflammation, S. thermophilus 19, and investigating the therapeutic effect and mechanism of S. thermophilus 19 on sepsis, which might be a new avenue for interventions against inflammation caused by sepsis and other systemic inflammatory diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yuanhang Wu ◽  
Jianlin Wu ◽  
Zhikun Lin ◽  
Qian Wang ◽  
Ying Li ◽  
...  

Probiotic-based therapies have been shown to be beneficial for chemotherapy-induced mucositis. Previous research has demonstrated that a probiotic mixture (Bifidobacterium brevis, Lactobacillus acidophilus, Lactobacillus casei, and Streptococcus thermophilus) can ameliorate chemotherapy-induced mucositis and dysbiosis in rats, but the underlying mechanism has not been completely elucidated. We aimed to determine the inhibitory effects of the probiotic mixture on cisplatin-induced mucositis and pica and the underlying mechanism, focusing on the levels of 5-hydroxytryptamine (5-HT, serotonin) regulated by the gut microbiota. A rat model of mucositis and pica was established by daily intraperitoneal injection of cisplatin (6 mg/kg) for 3 days. In the probiotic+cisplatin group, predaily intragastric injection of the probiotic mixture ( 1 × 10 9   CFU / kg BW) was administrated for 1 week before cisplatin injection. This was then followed by further daily probiotic injections for 6 days. Histopathology, pro-/anti-inflammatory cytokines, oxidative status, and 5-HT levels were assessed on days 3 and 6. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and quantitative PCR. Additionally, 5-HT levels in enterochromaffin (EC) cells (RIN-14B cell line) treated with cisplatin and/or various probiotic bacteria were also determined. The probiotic mixture significantly attenuated kaolin consumption, inflammation, oxidative stress, and the increase in 5-HT concentrations in rats with cisplatin-induced intestinal mucositis and pica. Cisplatin markedly increased the relative abundances of Enterobacteriaceae_other, Blautia, Clostridiaceae_other, and members of Clostridium clusters IV and XIVa. These levels were significantly restored by the probiotic mixture. Importantly, most of the genera increased by cisplatin were significantly positively correlated with colonic 5-HT. Furthermore, in vitro, the probiotic mixture had direct inhibitory effects on the 5-HT secretion by EC cells. The probiotic mixture protects against cisplatin-induced intestine injury, exhibiting both anti-inflammatory and antiemetic properties. These results were closely related to the reestablishment of intestinal microbiota ecology and normalization of the dysbiosis-driven 5-HT overproduction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junli Sun ◽  
Keke Xin ◽  
Chenghui Leng ◽  
Jianlin Ge

Abstract Background Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. Methods A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin–Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. Results As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3′ untranslated region of HMGB3. Conclusions Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Jamal Uddin ◽  
Chun-shi Li ◽  
Yeonsoo Joe ◽  
Yingqing Chen ◽  
Qinggao Zhang ◽  
...  

Tenascin-C (TN-C), an extracellular matrix (ECM) glycoprotein, is specifically induced upon tissue injury and infection and during septic conditions. Carbon monoxide (CO) gas is known to exert various anti-inflammatory effects in various inflammatory diseases. However, the mechanisms underlying the effect of CO on TN-C-mediated inflammation are unknown. In the present study, we found that treatment with LPS significantly enhanced TN-C expression in macrophages. CO gas, or treatment with the CO-donor compound, CORM-2, dramatically reduced LPS-induced expression of TN-C and proinflammatory cytokines while significantly increased the expression of IL-10. Treatment with TN-C siRNA significantly suppressed the effects of LPS on proinflammatory cytokines production. TN-C siRNA did not affect the CORM-2-dependent increase of IL-10 expression. In cells transfected with IL-10 siRNA, CORM-2 had no effect on the LPS-induced expression of TN-C and its downstream cytokines. These data suggest that IL-10 mediates the inhibitory effect of CO on TN-C and the downstream production of proinflammatory cytokines. Additionally, administration of CORM-2 dramatically reduced LPS-induced TN-C and proinflammatory cytokines production while expression of IL-10 was significantly increased. In conclusion, CO regulated IL-10 expression and thus inhibited TN-C-mediated inflammationin vitroandin vivo.


2021 ◽  
Author(s):  
Lili Li ◽  
Xiaohui Zhu ◽  
Xingxing Chai ◽  
Xiaoyu Chen ◽  
Xiaohua Su ◽  
...  

Abstract Helicobacter pylori ( H. pylori ) is a major pathogenic factor for the development of gastric diseases including chronic gastritis and gastric cancer. Callicarpa nudiflora (CN), an air-dried leaves extract of Callicarpa nudiflora Hook. & Arn., has been found to exhibit a broad-spectrum antibacterial effect. In our study, we extracted the active ingredient from air-dried leaves of Callicarpa nudiflora, detected the effect of CN against H. pylori -infected GES-1 cells in vitro , and elucidated the underlying mechanism. GES-1 cells were cocultured with HPSS1 at MOI = 100:1 and treated with different concentrations of CN. Results indicated that CN not only significantly decreased cellular lactate dehydrogenase leakage, but also markedly attenuated H. pylori -induced cell apoptosis and ROS production in GSE-1 cells, therefore protecting gastric epithelial cells against injuries caused by H. pylori . CN also inhibited the secretions of inflammatory factors, such as tumor necrosis factor-α (TNF-α), IL-1β, IL-6 and IL-8. Furthermore, CN remarkably decreased the expression levels of NLRP3, PYCARD, active Caspase-1. In conclusion, CN exhibited highly efficient protective effect against H. pylori -induced gastritis and cell damage; Mechanismly, CN suppressed H. pylori -triggered inflammatory response and pyroptosis through depressing ROS production and NLRP3 inflammasome activation via ROS/NLRP3/IL-1β signaling axis.


2022 ◽  
Author(s):  
Laura Robrahn ◽  
Aline Dupont ◽  
Sandra Jumpertz ◽  
Kaiyi Zhang ◽  
Christian H. Holland ◽  
...  

The hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and to ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we could infer significant activation of HIF-1 after oral infection of mice with Salmonella Typhimurium. Immunohistochemistry and western blot analysis confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a -deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced non-canonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact on inflammatory gene expression, bacterial spread or disease outcome. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro , HIF-1α-deficient macrophages showed an overall impaired transcription of mRNA encoding pro-inflammatory factors, however, intracellular survival of Salmonella was not impacted by HIF-1α deficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi Chen ◽  
Dan Tang ◽  
Linjie Zhu ◽  
Tianjie Yuan ◽  
Yingfu Jiao ◽  
...  

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is a protein involved in the regulation of RNA processing, cell metabolism, migration, proliferation, and apoptosis. However, the effect of hnRNPA2/B1 on injured endothelial cells (ECs) remains unclear. We investigated the effect of hnRNPA2/B1 on lipopolysaccharide- (LPS-) induced vascular endothelial injury in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms. LPS was used to induce EC injury, and the roles of hnRNPA2/B1 in EC barrier dysfunction and inflammatory responses were measured by testing endothelial permeability and the expression of inflammatory factors after the suppression and overexpression of hnRNPA2/B1. To explore the underlying mechanism by which hnRNPA2/B1 regulates endothelial injury, we studied the VE-cadherin/β-catenin pathway and NF-κB activation in HUVECs. The results showed that hnRNPA2/B1 was elevated in LPS-stimulated HUVECs. Moreover, knockdown of hnRNPA2/B1 aggravated endothelial injury by increasing EC permeability and promoting the secretion of the inflammatory cytokines TNF-α, IL-1β, and IL-6. Overexpression of hnRNPA2/B1 can reduce the permeability and inflammatory response of HUVEC stimulated by LPS in vitro, while increasing the expression of VE-Cadherin and β-catenin. Furthermore, the suppression of hnRNPA2/B1 increased the LPS-induced NF-κB activation and reduced the VE-cadherin/β-catenin pathway. Taken together, these results suggest that hnRNPA2/B1 can regulate LPS-induced EC damage through regulating the NF-κB and VE-cadherin/β-catenin pathways.


2012 ◽  
Vol 109 (5) ◽  
pp. 802-809 ◽  
Author(s):  
Audrey M. Neyrinck ◽  
Vincent F. Van Hée ◽  
Laure B. Bindels ◽  
Fabienne De Backer ◽  
Patrice D. Cani ◽  
...  

Pomegranate extracts have been used for centuries in traditional medicine to confer health benefits in a number of inflammatory diseases, microbial infections and cancer. Peel fruit are rich in polyphenols that exhibit antioxidant and anti-inflammatory capacitiesin vitro. Recent studies strongly suggest that the gut microbiota is an environmental factor to be taken into account when assessing the risk factors related to obesity. The aim of the present study was to test the prebiotic potency of a pomegranate peel extract (PPE) rich in polyphenols in a nutritional model of obesity associated with hypercholesterolaemia and inflammatory disorders. Balb/c mice were fed either a control diet or a high-fat (HF) diet with or without PPE (6 mg/d per mouse) over a period of 4 weeks. Interestingly, PPE supplementation increased caecal content weight and caecal pool of bifidobacteria. It did not significantly modify body weight gain, glycaemia, glucose tolerance and inflammatory markers measured in the serum. However, it reduced the serum level of cholesterol (total and LDL) induced by HF feeding. Furthermore, it counteracted the HF-induced expression of inflammatory markers both in the colon and the visceral adipose tissue. Together, these findings support that pomegranate constitutes a promising food in the control of atherogenic and inflammatory disorders associated with diet-induced obesity. Knowing the poor bioavailability of pomegranate polyphenols, its bifidogenic effect observed after PPE consumption suggests the involvement of the gut microbiota in the management of host metabolism by polyphenolic compounds present in pomegranate.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shaoyi Wang ◽  
Jianlu Wei ◽  
Jie Shi ◽  
Qiting He ◽  
Xiaocong Zhou ◽  
...  

Background. Inflammation plays an important role in intervertebral disc degeneration (IDD). The protein follistatin-like 1 (FSTL1) plays a proinflammatory role in a variety of inflammatory diseases. Objectives. The purpose of this study was to investigate whether IDD could be delayed by inhibiting FSTL-1 expression. Methods. We established a puncture-induced IDD model in wild-type and FSTL-1+/- mice and collected intervertebral discs (IVDs) from the mice. Safranin O staining was used to detect cartilage loss of IVD tissue, and HE staining was used to detect morphological changes of IVD tissue. We measured the expression of FSTL-1 and related inflammatory indicators in IVD tissues by immunohistochemical staining, real-time PCR, and Western blotting. Results. In the age-induced model of IDD, the level of FSTL-1 increased with the exacerbation of degeneration. In the puncture-induced IDD model, FSTL-1-knockdown mice showed a reduced degree of degeneration compared with that of wild-type mice. Further experiments showed that FSTL-1 knockdown also significantly reduced the level of related inflammatory factors in IVD. In vitro experiments showed that FSTL-1 knockdown significantly reduced TNF-α-induced inflammation. Specifically, the expression levels of the inflammatory factors COX-2, iNOS, MMP-13, and ADAMTS-5 were reduced. Knockdown of FSTL-1 attenuated inflammation by inhibiting the expression of P-Smad1/5/8, P-Erk1/2, and P-P65. Conclusion. Knockdown of FSTL-1 attenuated inflammation by inhibiting the TNF-α response and Smad pathway activity and ultimately delayed IDD.


Sign in / Sign up

Export Citation Format

Share Document