scholarly journals Proteomic Analysis of Listeria monocytogenes FBUNT During Biofilm Formation at 10°C in Response to Lactocin AL705

2021 ◽  
Vol 12 ◽  
Author(s):  
Constanza Melian ◽  
Patricia Castellano ◽  
Franco Segli ◽  
Lucía M. Mendoza ◽  
Graciela Margarita Vignolo

Listeria monocytogenes is one of the major food-related pathogens and is able to survive and multiply under different stress conditions. Its persistence in industrial premises and foods is partially due to its ability to form biofilm. Thus, as a natural strategy to overcome L. monocytogenes biofilm formation, the treatment with lactocin AL705 using a sublethal dose (20AU/ml) was explored. The effect of the presence of the bacteriocin on the biofilm formation at 10°C of L. monocytogenes FBUNT was evaluated for its proteome and compared to the proteomes of planktonic and sessile cells grown at 10°C in the absence of lactocin. Compared to planktonic cells, adaptation of sessile cells during cold stress involved protein abundance shifts associated with ribosomes function and biogenesis, cell membrane functionality, carbohydrate and amino acid metabolism, and transport. When sessile cells were treated with lactocin AL705, proteins’ up-regulation were mostly related to carbohydrate metabolism and nutrient transport in an attempt to compensate for impaired energy generation caused by bacteriocin interacting with the cytoplasmic membrane. Notably, transport systems such as β-glucosidase IIABC (lmo0027), cellobiose (lmo2763), and trehalose (lmo1255) specific PTS proteins were highly overexpressed. In addition, mannose (lmo0098), a specific PTS protein indicating the adaptive response of sessile cells to the bacteriocin, was downregulated as this PTS system acts as a class IIa bacteriocin receptor. A sublethal dose of lactocin AL705 was able to reduce the biofilm formation in L. monocytogenes FBUNT and this bacteriocin induced adaptation mechanisms in treated sessile cells. These results constitute valuable data related to specific proteins targeting the control of L. monocytogenes biofilm upon bacteriocin treatment.

Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 250 ◽  
Author(s):  
Daniel Rodríguez-Campos ◽  
Cristina Rodríguez-Melcón ◽  
Carlos Alonso-Calleja ◽  
Rosa Capita

Some strains of Listeria monocytogenes can persist in food-processing environments, increasing the likelihood of the contamination of foodstuffs. To identify traits that contribute to bacterial persistence, a selection of persistent and sporadic L. monocytogenes isolates from a poultry-processing facility was investigated for biofilm-forming ability (crystal violet assay). The susceptibility of sessile cells to treatments (five minutes) with sodium hypochlorite having 10% active chlorine (SHY: 10,000 ppm, 25,000 ppm, and 50,000 ppm) and benzalkonium chloride (BZK: 2500 ppm, 10,000 ppm, and 25,000 ppm) was also studied. All isolates exhibited biofilm formation on polystyrene. Persistent strains showed larger (p < 0.001) biofilm formation (OD580 = 0.301 ± 0.097) than sporadic strains (OD580 = 0.188 ± 0.082). A greater susceptibility to disinfectants was observed for biofilms of persistent strains than for those of sporadic strains. The application of SHY reduced biofilms only for persistent strains. BZK increased OD580 in persistent strains (2500 ppm) and in sporadic strains (all concentrations). These results indicate that the use of BZK at the concentrations tested could represent a public health risk. Findings in this work suggest a link between persistence and biofilm formation, but do not support a relationship between persistence and the resistance of sessile cells to disinfectants.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Suelen Balero de Paula ◽  
Thais Fernanda Bartelli ◽  
Vanessa Di Raimo ◽  
Jussevania Pereira Santos ◽  
Alexandre Tadachi Morey ◽  
...  

MostCandidaspp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity ofCandida dubliniensisandCandida tropicalisisolated from the oral cavity of HIV-infected patients. All isolates were able to form biofilms on different substrate surfaces. Eugenol showed inhibitory activity against planktonic and sessile cells ofCandidaspp. No metabolic activity in biofilm was detected after 24 h of treatment. Scanning electron microscopy demonstrated that eugenol drastically reduced the number of sessile cells on denture material surfaces. MostCandidaspecies showed hydrophobic behavior and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to eugenol for 1 h. Eugenol also caused a significant reduction in adhesion of mostCandidaspp. to HEp-2 cells and to polystyrene. These findings corroborate the effectiveness of eugenol againstCandidaspecies other thanC. albicans, reinforcing its potential as an antifungal applied to limit both the growth of planktonic cells and biofilm formation on different surfaces.


2012 ◽  
Vol 78 (8) ◽  
pp. 2586-2595 ◽  
Author(s):  
Maria Kostaki ◽  
Nikos Chorianopoulos ◽  
Elli Braxou ◽  
George-John Nychas ◽  
Efstathios Giaouris

ABSTRACTThis study aimed to investigate the possible influence of bacterial intra- and interspecies interactions on the ability ofListeria monocytogenesandSalmonella entericato develop mixed-culture biofilms on an abiotic substratum, as well as on the subsequent resistance of sessile cells to chemical disinfection. Initially, three strains from each species were selected and left to attach and form biofilms on stainless steel (SS) coupons incubated at 15°C for 144 h, in periodically renewable tryptone soy broth (TSB), under either monoculture or mixed-culture (mono-/dual-species) conditions. Following biofilm formation, mixed-culture sessile communities were subjected to 6-min disinfection treatments with (i) benzalkonium chloride (50 ppm), (ii) sodium hypochlorite (10 ppm), (iii) peracetic acid (10 ppm), and (iv) a mixture of hydrogen peroxide (5 ppm) and peracetic acid (5 ppm). Results revealed that both species reached similar biofilm counts (ca. 105CFU cm−2) and that, in general, interspecies interactions did not have any significant effect either on the biofilm-forming ability (as this was assessed by agar plating enumeration of the mechanically detached biofilm bacteria) or on the antimicrobial resistance of each individual species. Interestingly, pulsed-field gel electrophoresis (PFGE) analysis clearly showed that the threeL. monocytogenesstrains did not contribute at the same level either to the formation of mixed-culture sessile communities (mono-/dual species) or to their antimicrobial recalcitrance. Additionally, the simultaneous existence inside the biofilm structure ofS. entericacells seemed to influence the occurrence and resistance pattern ofL. monocytogenesstrains. In sum, this study highlights the impact of microbial interactions taking place inside a mixed-culture sessile community on both its population dynamics and disinfection resistance.


2005 ◽  
Vol 73 (6) ◽  
pp. 3351-3357 ◽  
Author(s):  
Yongshu Zhang ◽  
Yu Lei ◽  
Angela Nobbs ◽  
Ali Khammanivong ◽  
Mark C. Herzberg

ABSTRACT SspA and SspB (antigen I/II family proteins) can bind Streptococcus gordonii to other oral bacteria and also to salivary agglutinin glycoprotein, a constituent of the salivary film or pellicle that coats the tooth. To learn if SspA and SspB are essential for adhesion and initial biofilm formation on teeth, S. gordonii DL1 was incubated with saliva-coated hydroxyapatite (sHA) for 2 h in Todd-Hewitt broth with 20% saliva to develop initial biofilms. Sessile cells attached to sHA, surrounding planktonic cells, and free-growing cells were recovered separately. Free-growing cells expressed more sspA-specific mRNA and sspB-specific mRNA than sessile cells. Free-growing cells expressed the same levels of sspA and sspB as planktonic cells. Surprisingly, an SspA− SspB− mutant strain showed 2.2-fold greater biofilm formation on sHA than wild-type S. gordonii DL1. To explain this observation, we tested the hypothesis that inactivation of sspA and sspB genes altered the expression of other adhesin genes during initial biofilm formation in vitro. When compared to wild-type cells, expression of scaA and abpB was significantly up-regulated in the SspA− SspB− strain in sessile, planktonic, and free-growing cells. Consistent with this finding, ScaA antigen was also overexpressed in planktonic and free-growing SspA− SspB− cells compared to the wild type. SspA/B adhesins, therefore, were strongly suggested to be involved in the regulation of multiple adhesin genes.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Isela Serrano-Fujarte ◽  
Everardo López-Romero ◽  
Georgina Elena Reyna-López ◽  
Ma. Alejandrina Martínez-Gámez ◽  
Arturo Vega-González ◽  
...  

The aims of the study were to evaluate the influence of culture media on biofilm formation byC. albicans, C. glabrata, C. krusei,andC. parapsilosisand to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, theCandidaspecies were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay.C. albicansformed biofilms preferentially in YPD containing 2% glucose (YPD/2%),C. glabratain glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), whileC. kruseiandC. parapsilosispreferred YP, YPD/0.2%, and YPD/2%. Interestingly, onlyC. albicansproduced an exopolymeric matrix. This is the first report dealing with thein vitroeffect of the culture medium and glucose on the formation of biofilms in fourCandidaspecies as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasisin vivois a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.


2021 ◽  
Vol 96 ◽  
pp. 103714
Author(s):  
Mohit Bansal ◽  
Nitin Dhowlaghar ◽  
Ramakrishna Nannapaneni ◽  
Divya Kode ◽  
Sam Chang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xingjian Bai ◽  
Dongqi Liu ◽  
Luping Xu ◽  
Shivendra Tenguria ◽  
Rishi Drolia ◽  
...  

AbstractEnvironmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models. Lm sessile cells express reduced levels of the lap, inlA, hly, prfA, and sigB and show reduced adhesion, invasion, translocation, and cytotoxicity in the cell culture model than the planktonic cells. Oral challenge of C57BL/6 mice with food, clinical, or murinized-InlA (InlAm) strains reveals that at 12 and 24 h post-infection (hpi), Lm burdens are lower in tissues of mice infected with sessile cells than those infected with planktonic cells. However, these differences are negligible at 48 hpi. Besides, the expressions of inlA and lap mRNA in sessile Lm from intestinal content are about 6.0- and 280-fold higher than the sessle inoculum, respectively, suggesting sessile Lm can still upregulate virulence genes shortly after ingestion (12 h). Similarly, exposure to simulated gastric fluid (SGF, pH 3) and intestinal fluid (SIF, pH 7) for 13 h shows equal reduction in sessile and planktonic cell counts, but induces LAP and InlA expression and pathogenic phenotypes. Our data show that the virulence of biofilm-isolated Lm is temporarily attenuated and can be upregulated in mice during the early stage (12–24 hpi) but fully restored at a later stage (48 hpi) of infection. Our study further demonstrates that in vitro cell culture assay is unreliable; therefore, an animal model is essential for studying the pathogenesis of biofilm-isolated bacteria.


Author(s):  
S. R. Warke ◽  
V. C. Ingle ◽  
N. V. Kurkure ◽  
P. A. Tembhurne ◽  
Minakshi Prasad ◽  
...  

Listeria monocytogenes, an opportunistic food borne pathogen can cause serious infections in immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments.The biofilm transfers contamination to food products and impose risk to public health. In the present study biofilm producing ability of L. monocytogenes isolates were investigated phenotypically and genotypically by microtiter assay and multiplex PCR, respectively. Out of 38 L. monocytogenes isolates 14 were recovered from animal clinical cases, 12 bovine environment and 12 from milk samples. A total of 3 (21.42%) clinical, 2 (16.66%) environment and 3 (25%) milk samples respectively, revealed biofilm production in microtiter assay. Cumulative results showed that 23 (60.52%) out of 38 strains of L. monocytogenes were positive for luxS and flaA gene and 1 (2.63%) was positive only for the flaA gene.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Dimitra Kostoglou ◽  
Parthena Tsaklidou ◽  
Ioannis Iliadis ◽  
Nikoletta Garoufallidou ◽  
Georgia Skarmoutsou ◽  
...  

Fresh vegetables and salads are increasingly implicated in outbreaks of foodborne infections, such as those caused by Listeria monocytogenes, a dangerous pathogen that can attach to the surfaces of the equipment creating robust biofilms withstanding the killing action of disinfectants. In this study, the antimicrobial efficiency of a natural plant terpenoid (thymol) was evaluated against a sessile population of a multi-strain L. monocytogenes cocktail developed on stainless steel surfaces incubated in lettuce broth, under optimized time and temperature conditions (54 h at 30.6 °C) as those were determined following response surface modeling, and in comparison, to that of an industrial disinfectant (benzalkonium chloride). Prior to disinfection, the minimum bactericidal concentrations (MBCs) of each compound were determined against the planktonic cells of each strain. The results revealed the advanced killing potential of thymol, with a concentration of 625 ppm (= 4 × MBC) leading to almost undetectable viable bacteria (more than 4 logs reduction following a 15-min exposure). For the same degree of killing, benzalkonium chloride needed to be used at a concentration of at least 20 times more than its MBC (70 ppm). Discriminative repetitive sequence-based polymerase chain reaction (rep-PCR) also highlighted the strain variability in both biofilm formation and resistance. In sum, thymol was found to present an effective anti-listeria action under environmental conditions mimicking those encountered in the salad industry and deserves to be further explored to improve the safety of fresh produce.


Sign in / Sign up

Export Citation Format

Share Document