scholarly journals Silencing of lncRNA MIR497HG via CRISPR/Cas13d Induces Bladder Cancer Progression Through Promoting the Crosstalk Between Hippo/Yap and TGF-β/Smad Signaling

2020 ◽  
Vol 7 ◽  
Author(s):  
Changshui Zhuang ◽  
Ying Liu ◽  
Shengqiang Fu ◽  
Chaobo Yuan ◽  
Jingwen Luo ◽  
...  

A subset of long non-coding RNAs (lncRNAs), categorized as miRNA-host gene lncRNAs (lnc-miRHGs), is processed to produce miRNAs and involved in cancer progression. This work aimed to investigate the influences and the molecular mechanisms of lnc-miRHGs MIR497HG in bladder cancer (BCa). The miR-497 and miR-195 were derived from MIR497HG. We identified that lnc-miRHG MIR497HG and two harbored miRNAs, miR-497 and miR-195, were downregulated in BCa by analyzing The Cancer Genome Atlas and our dataset. Silencing of MIR497HG by CRISPR/Cas13d in BCa cell line 5637 promoted cell growth, migration, and invasion in vitro. Conversely, overexpression of MIR497HG suppressed cell progression in BCa cell line T24. MiR-497/miR-195 mimics rescued significantly the oncogenic roles of knockdown of MIR497HG by CRISPR/Cas13d in BCa. Mechanistically, miR-497 and miR-195 co-ordinately suppressed multiple key components in Hippo/Yap and transforming growth factor β signaling and particularly attenuated the interaction between Yap and Smad3. In addition, E2F4 was proven to be critical for silencing MIR497HG transcription in BCa cells. In short, we propose for the first time to reveal the function and mechanisms of MIR497HG in BCa. Blocking the pathological process may be a potential strategy for the treatment of BCa.

2020 ◽  
Author(s):  
Changshui Zhuang ◽  
Ying Liu ◽  
Chaobo Yuan ◽  
Shengqiang Fu ◽  
Weifeng Yang ◽  
...  

Abstract Objectives A subclass of long non-coding RNAs (lncRNAs), categorized as miRNA-host gene lncRNAs (lnc-miRHGs), is processed to produce miRNAs and involve in cancer progression. This work aimed to investigate the influence and the molecular mechanisms of lnc-miRHGs MIR497HG in bladder cancer (BCa). Materials and methods The miR-497 and miR-195 were derived from MIR497HG. Cell proliferation, migration and invasion assays were used to measure the function of MIR497HG, miR-497 and miR-195 in BCa. Bioinformatics, RT-qPCR, western blot, luciferase reporter assay, ChIP, and so on, were used to reveal the upstream and downstream mechanisms of MIR497HG in BCa. Results We identified that lnc-miRHG MIR497HG and two harbored miRNAs, miR-497 and miR-195, were downregulated in BCa by analyzing TCGA and our dataset. MIR497HG overexpression inhibited BCa cell proliferation, migration and invasion in vitro. MiR-497/miR-195 inhibitor rescued significantly the inhibiton effects of overexpression of MIR497HG in BCa. Mechanistically, miR-497 and miR-195 coordinately suppressed multiple key components in Hippo/Yap and TGF-β signaling, and particularly attenuated the interaction between Yap and Smad3. In addition, E2F4 was proved to be critical for silencing MIR497HG transcription in BCa cells. Conclusions We propose for the first time that MIR497HG suppressed BCa progression and its upstream and downstream mechanisms. Blocking the pathological process may be a potential strategy for the treatment of BCa.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1715
Author(s):  
Xin Luo ◽  
Qiangqiang Deng ◽  
Yaru Xue ◽  
Tianwei Zhang ◽  
Zhitao Wu ◽  
...  

Pulmonary fibrosis is a severe and irreversible interstitial pulmonary disease with high mortality and few treatments. Magnesium lithospermate B (MLB) is a hydrosoluble component of Salvia miltiorrhiza and has been reported to have antifibrotic effects in other forms of tissue fibrosis. In this research, we studied the effects of MLB on pulmonary fibrosis and the underlying mechanisms. Our results indicated that MLB treatment (50 mg/kg) for seven days could attenuate bleomycin (BLM)-induced pulmonary fibrosis by reducing the alveolar structure disruption and collagen deposition in the C57 mouse model. MLB was also found to inhibit transforming growth factor-beta (TGF-β)-stimulated myofibroblastic transdifferentiation of human lung fibroblast cell line (MRC-5) cells and collagen production by human type II alveolar epithelial cell line (A549) cells, mainly by decreasing the expression of TGF-β receptor I (TGF-βRI) and regulating the TGF-β/Smad pathway. Further studies confirmed that the molecular mechanisms of MLB in BLM-induced pulmonary fibrosis mice were similar to those observed in vitro. In summary, our results demonstrated that MLB could alleviate experimental pulmonary fibrosis both in vivo and in vitro, suggesting that MLB has great potential for pulmonary fibrosis treatment.


2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.


2018 ◽  
Vol 96 (8) ◽  
pp. 728-741 ◽  
Author(s):  
Sowmya Mekala ◽  
SubbaRao V. Tulimilli ◽  
Ramasatyaveni Geesala ◽  
Kanakaraju Manupati ◽  
Neha R. Dhoke ◽  
...  

Apoptotic hepatocytes release factors that activate hepatic stellate cells (HSCs), thereby inducing hepatic fibrosis. In the present study, in vivo and in vitro injury models were established using acetaminophen, ethanol, carbon tetrachloride, or thioacetamide. Histology of hepatotoxicant-induced diseased hepatic tissue correlated with differential expression of fibrosis-related genes. A marked increase in co-staining of transforming growth factor β receptor type II (TGFRIIβ) – desmin or α-smooth muscle actin – platelet-derived growth factor receptor β (PDGFRβ), markers of activated HSCs, in liver sections of these hepatotoxicant-treated mice also depicted an increase in Annexin V – cytokeratin expressing hepatocytes. To understand the molecular mechanisms of disease pathology, in vitro experiments were designed using the conditioned medium (CM) of hepatotoxicant-treated HepG2 cells supplemented to HSCs. A significant increase in HSC proliferation, migration, and expression of fibrosis-related genes and protein was observed, thereby suggesting the characteristics of an activated phenotype. Treating HepG2 cells with hepatotoxicants resulted in a significant increase in mRNA expression of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ). CM supplemented to HSCs resulted in increased phosphorylation of PDGFRβ and TGFRIIβ along with its downstream effectors, extracellular signal-related kinase 1/2 and focal adhesion kinase. Neutralizing antibodies against PDGF-BB and TGFβ effectively perturbed the hepatotoxicant-treated HepG2 cell CM-induced activation of HSCs. This study suggests PDGF-BB and TGFβ as potential molecular targets for developing anti-fibrotic therapeutics.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Xi Wang ◽  
Zhe Cheng ◽  
Lingling Dai ◽  
Tianci Jiang ◽  
Liuqun Jia ◽  
...  

ABSTRACT Long noncoding RNAs (lncRNAs) are involved in various human diseases. Recently, H19 was reported to be upregulated in fibrotic rat lung and play a stimulative role in bleomycin (BLM)-induced pulmonary fibrosis in mice. However, its expression in human fibrotic lung tissues and mechanism of action remain unclear. Here, our observations showed that H19 expression was significantly upregulated and that of microRNA 140 (miR-140) was markedly reduced in pulmonary fibrotic tissues from idiopathic pulmonary fibrosis (IPF) patients and transforming growth factor β1 (TGF-β1)-induced HBE and A549 cells. Moreover, the expression of H19 was negatively correlated with the expression of miR-140 in IPF tissues. H19 knockdown attenuated TGF-β1-induced pulmonary fibrosis in vitro. Furthermore, animal experiments showed that H19 knockdown attenuated BLM-induced pulmonary fibrosis in mice. The study of molecular mechanisms showed that H19 functioned via reduction of miR-140 expression by binding to miR-140. The increase of miR-140 inhibited TGF-β1-induced pulmonary fibrosis, and H19 upregulation diminished the inhibitory effects of miR-140 on TGF-β1-induced pulmonary fibrosis, which was involved in the TGF-β/Smad3 pathway. Taken together, our findings showed that H19 knockdown attenuated pulmonary fibrosis via the regulatory network of lncRNA H19–miR-140–TGF-β/Smad3 signaling, and H19 and miR-140 might represent therapeutic targets and early diagnostic and prognostic biomarkers for patients with pulmonary fibrosis.


2019 ◽  
Vol 20 (9) ◽  
pp. 2264 ◽  
Author(s):  
Razan Sheta ◽  
Magdalena Bachvarova ◽  
Elizabeth Macdonald ◽  
Stephane Gobeil ◽  
Barbara Vanderhyden ◽  
...  

Epithelial ovarian cancer (EOC) represents the most lethal gynecologic malignancy; a better understanding of the molecular mechanisms associated with EOC etiology could substantially improve EOC management. Aberrant O-glycosylation in cancer is attributed to alteration of N-acetylgalactosaminyltransferases (GalNAc-Ts). Reports suggest a genetic and functional redundancy between GalNAc-Ts, and our previous data are indicative of an induction of GALNT6 expression upon GALNT3 suppression in EOC cells. We performed single GALNT3 and double GALNT3/T6 suppression in EOC cells, using a combination of the CRISPR-Cas9 system and shRNA-mediated gene silencing. The effect of single GALNT3 and double GALNT3/T6 inhibition was monitored both in vitro (on EOC cells roliferation, migration, and invasion) and in vivo (on tumor formation and survival of experimental animals). We confirmed that GALNT3 gene ablation leads to strong and rather compensatory GALNT6 upregulation in EOC cells. Moreover, double GALNT3/T6 suppression was significantly associated with stronger inhibitory effects on EOC cell proliferation, migration, and invasion, and accordingly displayed a significant increase in animal survival rates compared with GALNT3-ablated and control (Ctrl) EOC cells. Our data suggest a possible functional redundancy of GalNAc-Ts (GALNT3 and T6) in EOC, with the perspective of using both these enzymes as novel EOC biomarkers and/or therapeutic targets.


2007 ◽  
Vol 404 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Ivan Alfano ◽  
Parvez Vora ◽  
Rosemary S. Mummery ◽  
Barbara Mulloy ◽  
Christopher C. Rider

GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor β domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pairs of other basic residues with alanine had no effect. The heparin-binding sequence is quite distinct from the binding site for the high affinity GDNF polypeptide receptor, GFRα1 (GDNF family receptor α1), and heparin-bound GDNF is able to bind GFRα1 simultaneously. The heparin-binding sequence of GDNF is dispensable both for GFRα1 binding, and for activity for in vitro neurite outgrowth assay. Surprisingly, the observed inhibition of GDNF bioactivity with the wild-type protein in this assay was still found with the deletion mutant lacking the heparin-binding sequence. Heparin neither inhibits nor potentiates GDNF–GFRα1 interaction, and the extracellular domain of GFRα1 does not bind to heparin itself, precluding heparin cross-bridging of cytokine and receptor polypeptides. The role of heparin and heparan sulfate in GDNF signalling remains unclear, but the present study indicates that it does not occur in the first step of the pathway, namely GDNF–GFRα1 engagement.


2019 ◽  
Vol 22 (3) ◽  
pp. 302-310 ◽  
Author(s):  
Q. Y. Li ◽  
K. Yang ◽  
F. G. Liu ◽  
X. G. Sun ◽  
L. Chen ◽  
...  

Abstract Purpose Long non-coding RNAs (lncRNAs) have been shown to play important roles in tumorigenesis, but their biological functions and the underlying molecular mechanisms remain unclear. Alternative splicing of five exons results in three transcript variants of cancer susceptibility 2 (CASC2): the lncRNAs CASC2a, CASC2b, and CASC2c. CASC2a/b have been found to have crucial regulatory functions in a number of malignancies, but few studies have examined the effects of CASC2c in cancers. The objective of the study was to investigate the role of CASC2c in the proliferation and apoptosis of hepatocellular carcinoma (HCC) cells. Methods This study first investigated the expression levels of CASC2c in tumor tissues, corresponding non-tumor tissues and cells using quantitative real-time polymerase chain reaction. The function and underlying molecular mechanism of CASC2c in human HCC were investigated in QGY-7703 cell line, as well as in gastric cancer (GC) cell and colorectal cancer (CRC) cell. Results In the present work, we observed that CASC2c was significantly down-regulated in HCC tissues and cells. Moreover, its overexpression remarkably inhibited the growth, migration, and invasion of HCC cells in vitro and promoted their apoptosis. Furthermore, we demonstrated that CASC2c overexpression decreased p-ERK1/2 levels in HCC, GC, and CRC cells. Interestingly, while overexpression of CASC2c decreased β-catenin expression in HCC and GC cells, it increased that in CRC cells. Conclusion The lncRNA–CASC2c has a vital role in tumorigenesis and cancer progression, and may serve as a biomarker or therapeutic target in cancer treatment via down-regulation of the ERK1/2 and Wnt/β-catenin signaling pathways.


2021 ◽  
Vol 7 (30) ◽  
pp. eabg5174
Author(s):  
Anna-Marie Finger ◽  
Sebastian Jäschke ◽  
Marta del Olmo ◽  
Robert Hurwitz ◽  
Adrián E. Granada ◽  
...  

Coupling between cell-autonomous circadian oscillators is crucial to prevent desynchronization of cellular networks and disruption of circadian tissue functions. While neuronal oscillators within the mammalian central clock, the suprachiasmatic nucleus, couple intercellularly, coupling among peripheral oscillators is controversial and the molecular mechanisms are unknown. Using two- and three-dimensional mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo, we show that peripheral oscillators couple via paracrine pathways. We identify transforming growth factor–β (TGF-β) as peripheral coupling factor that mediates paracrine phase adjustment of molecular clocks through transcriptional regulation of core-clock genes. Disruption of TGF-β signaling causes desynchronization of oscillator networks resulting in reduced amplitude and increased sensitivity toward external zeitgebers. Our findings reveal an unknown mechanism for peripheral clock synchrony with implications for rhythmic organ functions and circadian health.


Sign in / Sign up

Export Citation Format

Share Document