scholarly journals Eph/Ephrin-Based Protein Complexes: The Importance of cis Interactions in Guiding Cellular Processes

2022 ◽  
Vol 8 ◽  
Author(s):  
Alessandra Cecchini ◽  
D. D. W. Cornelison

Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.

2002 ◽  
Vol 115 (15) ◽  
pp. 3073-3081 ◽  
Author(s):  
Uyen Huynh-Do ◽  
Cécile Vindis ◽  
Hua Liu ◽  
Douglas Pat Cerretti ◽  
Jeffrey T. McGrew ◽  
...  

Ephrin-B/EphB family proteins are implicated in bidirectional signaling and were initially defined through the function of their ectodomain sequences in activating EphB receptor tyrosine kinases. Ephrin-B1-3 are transmembrane proteins sharing highly conserved C-terminal cytoplasmic sequences. Here we use a soluble EphB1 ectodomain fusion protein (EphB1/Fc) to demonstrate that ephrin-B1 transduces signals that regulate cell attachment and migration. EphB1/Fc induced endothelial ephrin-B1 tyrosine phosphorylation, migration and integrin-mediated (αvβ3 andα 5β1) attachment and promoted neovascularization, in vivo, in a mouse corneal micropocket assay. Activation of ephrin-B1 by EphB1/Fc induced phosphorylation of p46 JNK but not ERK-1/2 or p38 MAPkinases. By contrast, mutant ephrin-B1s bearing either a cytoplasmic deletion (ephrin-B1ΔCy) or a deletion of four C-terminal amino acids(ephrin-B1ΔPDZbd) fail to activate p46 JNK. Transient expression of intact ephin-B1 conferred EphB1/Fc migration responses on CHO cells, whereas the ephrin-B1ΔCy and ephrin-B1ΔPDZbd mutants were inactive. Thus ephrin-B1 transduces `outside-in' signals through C-terminal protein interactions that affect integrin-mediated attachment and migration.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
T. E. Hall ◽  
A. J. Wood ◽  
O. Ehrlich ◽  
M. Li ◽  
C. S. Sonntag ◽  
...  

AbstractLaminins comprise structural components of basement membranes, critical in the regulation of differentiation, survival and migration of a diverse range of cell types, including skeletal muscle. Mutations in one muscle enriched Laminin isoform, Laminin alpha2 (Lama2), results in the most common form of congenital muscular dystrophy, congenital muscular dystrophy type 1A (MDC1A). However, the exact cellular mechanism by which Laminin loss results in the pathological spectrum associated with MDC1A remains elusive. Here we show, via live tracking of individual muscle fibres, that dystrophic myofibres in the zebrafish model of MDC1A maintain sarcolemmal integrity and undergo dynamic remodelling behaviours post detachment, including focal sarcolemmal reattachment, cell extension and hyper-fusion with surrounding myoblasts. These observations imply the existence of a window of therapeutic opportunity, where detached cells may be “re-functionalised” prior to their delayed entry into the cell death program, a process we show can be achieved by muscle specific or systemic Laminin delivery. We further reveal that Laminin also acts as a pro-regenerative factor that stimulates muscle stem cell-mediated repair in lama2-deficient animals in vivo. The potential multi-mode of action of Laminin replacement therapy suggests it may provide a potent therapeutic axis for the treatment for MDC1A.


2018 ◽  
Vol 62 (6) ◽  
pp. 803-813 ◽  
Author(s):  
Lori Borgal ◽  
James G. Wakefield

The formation of a robust, bi-polar spindle apparatus, capable of accurate chromosome segregation, is a complex process requiring the co-ordinated nucleation, sorting, stabilization and organization of microtubules (MTs). Work over the last 25 years has identified protein complexes that act as functional modules to nucleate spindle MTs at distinct cellular sites such as centrosomes, kinetochores, chromatin and pre-existing MTs themselves. There is clear evidence that the extent to which these different MT nucleating pathways contribute to spindle mass both during mitosis and meiosis differs not only between organisms, but also in different cell types within an organism. This plasticity contributes the robustness of spindle formation; however, whether such plasticity is present in other aspects of spindle formation is less well understood. Here, we review the known roles of the protein complexes responsible for spindle pole focusing, investigating the evidence that these, too, act co-ordinately and differentially, depending on cellular context. We describe relationships between MT minus-end directed motors dynein and HSET/Ncd, depolymerases including katanin and MCAK, and direct minus-end binding proteins such as nuclear-mitotic apparatus protein, ASPM and Patronin/CAMSAP. We further explore the idea that the focused spindle pole acts as a non-membrane bound condensate and suggest that the metaphase spindle pole be treated as a transient organelle with context-dependent requirements for function.


1995 ◽  
Vol 129 (3) ◽  
pp. 619-627 ◽  
Author(s):  
A Gorodinsky ◽  
D A Harris

It has been known for a number of years that glycosyl-phosphatidylinositol (GPI)-anchored proteins, in contrast to many transmembrane proteins, are insoluble at 4 degrees C in nonionic detergents such as Triton X-100. Recently, it has been proposed that this behavior reflects the incorporation of GPI-linked proteins into large aggregates that are rich in sphingolipids and cholesterol, as well as in cytoplasmic signaling molecules such as heterotrimeric G proteins and src-family tyrosine kinases. It has been suggested that these lipid-protein complexes are derived from caveolae, non-clathrin-coated invaginations of the plasmalemma that are abundant in endothelial cells, smooth muscle, and lung. Caveolin, a proposed coat protein of caveolae, has been hypothesized to be essential for formation of the complexes. To further investigate the relationship between the detergent-resistant complexes and caveolae, we have characterized the behavior of GPI-anchored proteins in lysates of N2a neuroblastoma cells, which lack morphologically identifiable caveolae, and which do not express caveolin (Shyng, S.-L., J. E. Heuser, and D. A. Harris. 1994. J. Cell Biol. 125:1239-1250). We report here that the complexes prepared from N2a cells display the large size and low buoyant density characteristic of complexes isolated from sources that are rich in caveolae, and contain the same major constituents, including multiple GPI-anchored proteins, alpha and beta subunits of heterotrimeric G proteins, and the tyrosine kinases fyn and yes. Our results argue strongly that detergent-resistant complexes are not equivalent to caveolae in all cell types, and that in neuronal cells caveolin is not essential for the integrity of these complexes.


2020 ◽  
Vol 27 (20) ◽  
pp. 3330-3345
Author(s):  
Ana G. Rodríguez-Hernández ◽  
Rafael Vazquez-Duhalt ◽  
Alejandro Huerta-Saquero

Nanomaterials have become part of our daily lives, particularly nanoparticles contained in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms at the cellular level. The cell membrane is the first protective barrier against the potential toxic effect of nanoparticles. This first contact, including the interaction between the cell membranes -and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending on their toxicity, can cause cellular physiology alterations, such as a disruption in cell signaling or changes in gene expression and they can trigger immune responses and even apoptosis. Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed and discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1445
Author(s):  
Taisa Nogueira Pansani ◽  
Thanh Huyen Phan ◽  
Qingyu Lei ◽  
Alexey Kondyurin ◽  
Bill Kalionis ◽  
...  

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 349
Author(s):  
Nausika Betriu ◽  
Juan Bertran-Mas ◽  
Anna Andreeva ◽  
Carlos E. Semino

Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ann J. Ligocki ◽  
Wen Fury ◽  
Christian Gutierrez ◽  
Christina Adler ◽  
Tao Yang ◽  
...  

AbstractBulk RNA sequencing of a tissue captures the gene expression profile from all cell types combined. Single-cell RNA sequencing identifies discrete cell-signatures based on transcriptomic identities. Six adult human corneas were processed for single-cell RNAseq and 16 cell clusters were bioinformatically identified. Based on their transcriptomic signatures and RNAscope results using representative cluster marker genes on human cornea cross-sections, these clusters were confirmed to be stromal keratocytes, endothelium, several subtypes of corneal epithelium, conjunctival epithelium, and supportive cells in the limbal stem cell niche. The complexity of the epithelial cell layer was captured by eight distinct corneal clusters and three conjunctival clusters. These were further characterized by enriched biological pathways and molecular characteristics which revealed novel groupings related to development, function, and location within the epithelial layer. Moreover, epithelial subtypes were found to reflect their initial generation in the limbal region, differentiation, and migration through to mature epithelial cells. The single-cell map of the human cornea deepens the knowledge of the cellular subsets of the cornea on a whole genome transcriptional level. This information can be applied to better understand normal corneal biology, serve as a reference to understand corneal disease pathology, and provide potential insights into therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document