scholarly journals Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System

2020 ◽  
Vol 14 ◽  
Author(s):  
Isis Zhang ◽  
Huijuan Hu

Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.

2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.


2016 ◽  
Vol 23 (3) ◽  
pp. 314-329 ◽  
Author(s):  
Rivka Noelanders ◽  
Kris Vleminckx

Wnt/β-catenin signaling plays a crucial role throughout all stages of brain development and remains important in the adult brain. Accordingly, many neurological disorders have been linked to Wnt signaling. Defects in Wnt signaling during neural development can give rise to birth defects or lead to neurological dysfunction later in life. Developmental signaling events can also be hijacked in the adult and result in disease. Moreover, knowledge about the physiological role of Wnt signaling in the brain might lead to new therapeutic strategies for neurological diseases. Especially, the important role for Wnt signaling in neural differentiation of pluripotent stem cells has received much attention as this might provide a cure for neurodegenerative disorders. In this review, we summarize the versatile role of Wnt/β-catenin signaling during neural development and discuss some recent studies linking Wnt signaling to neurological disorders.


2020 ◽  
Vol 19 (7) ◽  
pp. 509-526
Author(s):  
Qin Huang ◽  
Fang Yu ◽  
Di Liao ◽  
Jian Xia

: Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1078
Author(s):  
Debasish Roy ◽  
Andrea Tedeschi

Axons in the adult mammalian nervous system can extend over formidable distances, up to one meter or more in humans. During development, axonal and dendritic growth requires continuous addition of new membrane. Of the three major kinds of membrane lipids, phospholipids are the most abundant in all cell membranes, including neurons. Not only immature axons, but also severed axons in the adult require large amounts of lipids for axon regeneration to occur. Lipids also serve as energy storage, signaling molecules and they contribute to tissue physiology, as demonstrated by a variety of metabolic disorders in which harmful amounts of lipids accumulate in various tissues through the body. Detrimental changes in lipid metabolism and excess accumulation of lipids contribute to a lack of axon regeneration, poor neurological outcome and complications after a variety of central nervous system (CNS) trauma including brain and spinal cord injury. Recent evidence indicates that rewiring lipid metabolism can be manipulated for therapeutic gain, as it favors conditions for axon regeneration and CNS repair. Here, we review the role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and CNS repair. In addition, we outline molecular and pharmacological strategies to fine-tune lipid composition and energy metabolism in neurons and non-neuronal cells that can be exploited to improve neurological recovery after CNS trauma and disease.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1678
Author(s):  
Liriopé Toupenet Marchesi ◽  
Marion Leblanc ◽  
Giovanni Stevanin

Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.


2021 ◽  
Vol 12 (1) ◽  
pp. 466-476
Author(s):  
Vysakh Visweswaran ◽  
Roshni PR

Diseases of the nervous system are always associated with poor prognosis and limited treatment options. The fragile nature of the neurons and their inability to replicate means that neurological disorders are associated with a permanent disability. Pharmacotherapy of neurological diseases requires understanding the molecular mechanisms involved in the disease pathology. In most of the cases a faulty cellular biochemical pathway is involved, resulting from a defective enzyme. This article focusses on role of enzymes in various neurological disorders. To review pertinent literature and summarise the role of enzymes in the underlying pathology of various neurological disorders. A comprehensive literature search was conducted using PubMed, SCOPUS, J-GATE and Google Scholar and relevant papers were collected using the keywords enzymes, Alzheimer's disease, redox, thiamine, depression, neurotransmitters, epileptogenesis. The literature review highlighted the role of enzymes in major neurological disorders and their potential to be used as drug targets and biomarkers. Identifying defective enzymes gives us new molecular targets to focus on for developing more effective pharmacotherapeutic options. They can be also considered as potential biomarkers. An abnormal enzyme is most often a direct result of an underlying genetic abnormality. Identifying and screening for these genetic abnormalities can be used in early identification and prevention of disease in individuals who have a genetic predisposition. The modern advances in genetic engineering shows a lot of promise in correcting these abnormalities and development of revolutionary cures although ethical concerns remain. 


2020 ◽  
Vol 4 (1) ◽  
pp. 371-390
Author(s):  
Shawn Gillespie ◽  
Michelle Monje

The nervous system is intimately involved in physiological processes from development and growth to tissue homeostasis and repair throughout the body. It logically follows that the nervous system has the potential to play analogous roles in the context of cancer. Progress toward understanding the crucial role of the nervous system in cancer has accelerated in recent years, but much remains to be learned. Here, we highlight rapidly evolving concepts in this burgeoning research space and consider next steps toward understanding and therapeutically targeting the neural regulation of cancer.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Camille Dumon ◽  
Yasmine Belaidouni ◽  
Diabe Diabira ◽  
Suzanne M. Appleyard ◽  
Gary A. Wayman ◽  
...  

Abstract The canonical physiological role of leptin is to regulate hunger and satiety acting on specific hypothalamic nuclei. Beyond this key metabolic function; leptin also regulates many aspects of development and functioning of neuronal hippocampal networks throughout life. Here we show that leptin controls chloride homeostasis in the developing rat hippocampus in vitro. The effect of leptin relies on the down-regulation of the potassium/chloride extruder KCC2 activity and is present during a restricted period of postnatal development. This study confirms and extends the role of leptin in the ontogenesis of functional GABAergic inhibition and helps understanding how abnormal levels of leptin may contribute to neurological disorders.


2013 ◽  
pp. 16-22
Author(s):  
Alessandro Castiglione ◽  
Claudia Aimoni ◽  
Giovanni Scanelli

Background: Balance is primarily related to the proper functioning of three sensory input: vestibular, visual and proprioceptive. The integration of these different afferences contributes to the proper attitude of the body in static and dynamic conditions. Equilibrium disorders are common among elderly patients and are responsible for falls and fractures, leading sometimes to catastrophic outcomes, representing a serious health and social problem. Approximately one third of elderly patients at home and about 50% of institutionalized, over 75 year-old, suffer from this particular condition, with at least one fall a year and almost 50% of these with recurrent episodes. Females are more affected than males. Attempts to ascertain the underlying cause of unbalance should be done, leading then to specific treatment. Nevertheless, many elderly patients do not have a single disease but rather a multitude of medical conditions which may cause dizziness, imbalance and vertigo: effects of ageing, drugs, cardiovascular and neurological disorders, ocular and orthopaedic diseases. Aim of the study: A literature review was carried out with the intention to offer practical and useful notions for the management and treatment of equilibrium disorders. Discussion: In clinical practice, the main challenge is to distinguish between peripheral and central imbalance disorders. The data collected from history and clinical exams should be integrated with the intent to include the patient in one of the following clinical conditions: vertiginous syndrome, pre-syncope and/or syncope, neurological diseases, other conditions.Conclusions: Following the differential diagnosis, treatment mainly consists in drug administration (antiemetic and vestibular suppressor drugs) and vestibular rehabilitation (physiotherapy and vestibular exercises).


Sign in / Sign up

Export Citation Format

Share Document