scholarly journals Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers

2021 ◽  
Vol 14 ◽  
Author(s):  
Meng Zhang ◽  
Ping He ◽  
Zhigang Bian

Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are progressive and ultimately fatal. NDD onset is influenced by several factors including heredity and environmental cues. Long noncoding RNAs (lncRNAs) are a class of noncoding RNA molecules with: (i) lengths greater than 200 nucleotides, (ii) diverse biological functions, and (iii) highly conserved structures. They directly interact with molecules such as proteins and microRNAs and subsequently regulate the expression of their targets at the genetic, transcriptional, and post-transcriptional levels. Emerging studies indicate the important roles of lncRNAs in the progression of neurological diseases including NDDs. Additionally, improvements in detection technologies have enabled quantitative lncRNA detection and application to circulating fluids in clinical settings. Here, we review current research on lncRNAs in animal models and patients with NDDs. We also discuss the potential applicability of circulating lncRNAs as biomarkers in NDD diagnostics and prognostics. In the future, a better understanding of the roles of lncRNAs in NDDs will be essential to exploit these new therapeutic targets and improve noninvasive diagnostic methods for diseases.

2016 ◽  
Vol 29 (3) ◽  
pp. 155-155
Author(s):  
John P. Carr ◽  
Steven A. Whitham

Investigations in recent years have uncovered important roles for RNA molecules that do not encode proteins (‘noncoding RNAs’) but which, nevertheless, exert powerful effects on gene expression at both transcriptional and posttranscriptional levels. Our late colleague Biao Ding, who died unexpectedly on June 25, 2015, proposed a Focus Issue on the roles in plant-microbe interactions of noncoding RNAs, whether of plant or microbial origin and including small interfering (si)RNAs, microRNAs, phased siRNAs, and long noncoding RNAs, as well as viroids and satellite RNAs. The Editorial Board of MPMI has decided to dedicate this Focus Issue to the memory of Professor Biao Ding, a valued and deeply missed colleague and friend.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 251.1-251
Author(s):  
J. M. Kim ◽  
H. J. Kang ◽  
S. J. Jung ◽  
B. W. Song ◽  
H. J. Jeong ◽  
...  

Background:Long noncoding RNAs (lncRNAs) have recently emerged as important biological regulators and the aberrant expression of lncRNAs has been reported in various diseases including cancer, cardiovascular disease, and diabetes mellitus. However, the role of lncRNAs in the pathogenesis of rheumatoid arthritis (RA) remains unknown.Objectives:Thus, we studied lncRNAs influenced by IL-1, which is one of the key mediators in the pathogenesis of RA, and also investigated whether regulation of NF-κB activation, which is known to be induced by IL-1, could lead to the changes of expression of those lncRNAs.Methods:Fibroblast-like synoviocytes (FLS) were obtained from the knee joints of the patients with RA. The next-generation sequencing (NGS) data were analyzed to identify differentially expressed lncRNAs between unstimulated RA FLS and IL-1-stimulated RA FLS. The expression levels of the top 5 candidates in NGS data were validated by RT-qPCR using extended number of unstimulated RA FLS and IL-1-stimulated RA FLS. IMD-0560, an inhibitor of IκB kinase (IKK) was used for the regulation of NF-κB activation. Activation and inhibition of NF-κB were confirmed by Western blotting. Changed expressions of the lncRNAs were identified by RT-qPCR.Results:NGS analysis revealed up-regulated 30 lncRNAs and down-regulated 15 lncRNAs in IL-1-treated RA FLS compared with unstimulated RA FLS. Top 5 lncRNAs were selected among 30 lncRNAs up-regulated by IL-1 in RA FLS based on fold-change with P-value cutoff. The up-regulated lncRNAs including NR_046035, NR_027783, NR_033422, NR_003133, and NR_049759 were validated by RT-qPCR. IMD-0560 inhibited phosphorylation of IκBα induced by IL-1 in RA FLS. Overexpression of lncRNAs induced by IL-1 was also inhibited by IMD-0560 in RA FLS.Conclusion:Our study revealed that IL-1 increased the expression of NR_046035, NR_027783, NR_033422, NR_003133, and NR_049759 in RA FLS. In addition, the expression of these lncRNAs was regulated by inhibition of NF-κB activation. Thus, our data suggest that the lncRNAs might be involved in the pathogenesis of RA through NF-κB signaling pathway.References:[1]Long noncoding RNAs and human disease. Trends Cell Biol. 2011 Jun;21(6):354-61.[2]A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013 Aug 16;341(6147):789-92.[3]Long noncoding RNA expression profile in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther. 2016 Oct 6;18(1):227.Disclosure of Interests:None declared


2018 ◽  
Vol 7 (11) ◽  
pp. 461 ◽  
Author(s):  
Young-Kook Kim ◽  
Juhyun Song

Long noncoding RNAs (lncRNAs) are involved in diverse physiological and pathological processes by modulating gene expression. They have been found to be dysregulated in the brain and cerebrospinal fluid of patients with neurodegenerative diseases, and are considered promising therapeutic targets for treatment. Among the various neurodegenerative diseases, diabetic Alzheimer’s disease (AD) has been recently emerging as an important issue due to several unexpected reports suggesting that metabolic issues in the brain, such as insulin resistance and glucose dysregulation, could be important risk factors for AD. To facilitate understanding of the role of lncRNAs in this field, here we review recent studies on lncRNAs in AD and diabetes, and summarize them with different categories associated with the pathogenesis of the diseases including neurogenesis, synaptic dysfunction, amyloid beta accumulation, neuroinflammation, insulin resistance, and glucose dysregulation. It is essential to understand the role of lncRNAs in the pathogenesis of diabetic AD from various perspectives for therapeutic utilization of lncRNAs in the near future.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1662
Author(s):  
Ioana Maria Maier ◽  
Adrian Cornel Maier

Many studies have tried to understand the mechanism of endometriosis and its manner of manifestation. However, the only method of diagnosis considered as the gold standard in endometriosis is an invasive method called exploratory laparoscopy. Hence, there is a need to identify non-invasive or minimally invasive methods to minimize patients’ suffering, thus increasing their addressability at the earliest possible staging of the disease, and to diagnose this condition as soon as possible. miRNAs (microRNAs) and lncRNAs (long-noncoding RNAs) are potential non-invasive diagnostic methods for endometriosis. Multiple clinical trials indicate that miRNA can be used as a non-invasive method in the diagnosis and differentiation of endometriosis stages.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Zhang ◽  
Xianwu Chen ◽  
Juntao Lin ◽  
Xiaodong Jin

AbstractBladder cancer (BCa) is one of the 10 most common cancers with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNAs), a large class of noncoding RNA transcripts, consist of more than 200 nucleotides and play a significant role in the regulation of molecular interactions and cellular pathways during the occurrence and development of various cancers. In recent years, with the rapid advancement of high-throughput gene sequencing technology, several differentially expressed lncRNAs have been discovered in BCa, and their functions have been proven to have an impact on BCa development, such as cell growth and proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug-resistance. Furthermore, evidence suggests that lncRNAs are significantly associated with BCa patients’ clinicopathological characteristics, especially tumor grade, TNM stage, and clinical progression stage. In addition, lncRNAs have the potential to more accurately predict BCa patient prognosis, suggesting their potential as diagnostic and prognostic biomarkers for BCa patients in the future. In this review, we briefly summarize and discuss recent research progress on BCa-associated lncRNAs, while focusing on their biological functions and mechanisms, clinical significance, and targeted therapy in BCa oncogenesis and malignant progression.


RSC Advances ◽  
2019 ◽  
Vol 9 (61) ◽  
pp. 35624-35635 ◽  
Author(s):  
Hui Zhao ◽  
Li Meng ◽  
Chengyang Xu ◽  
Bin Lin ◽  
Xiangming Zheng ◽  
...  

Long noncoding RNAs have been widely accepted to play important roles in acute myocardial infarction (AMI).


2020 ◽  
Vol 126 (9) ◽  
pp. 1127-1145 ◽  
Author(s):  
Nicolas Jaé ◽  
Stefanie Dimmeler

The advent of deep sequencing technologies led to the identification of a considerable amount of noncoding RNA transcripts, which are increasingly recognized for their functions in controlling cardiovascular diseases. MicroRNAs have already been studied for a decade, leading to the identification of several vasculoprotective and detrimental species, which might be considered for therapeutic targeting. Other noncoding RNAs such as circular RNAs, YRNAs, or long noncoding RNAs are currently gaining increasing attention, and first studies provide insights into their functions as mediators or antagonists of vascular diseases in vivo. The present review article will provide an overview of the different types of noncoding RNAs controlling the vasculature and focus on the developing field of long noncoding RNAs.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Poller ◽  
A.W Kuss ◽  
S Weiss ◽  
A Haghikia ◽  
M Gast ◽  
...  

Abstract Background Uncontrolled inflammation is a key driver of atherosclerosis, myocardial infarction (MI), and multiple other diseases. Beyond proteins and microRNAs, long noncoding RNAs (lncRNAs) are implicated in inflammation control. We previously reported suppression of lncRNA NEAT1 in circulating immune cells of post-MI patients. In mice lacking lncRNAs NEAT1 or MALAT1 we observed major immune disturbances affecting monocyte-macrophage and T cell differentiation and rendering the immune system unstable and highly vulnerable to immune stress. Here, we report functions of a novel tRNA-type transcript arising from the NEAT1-MALAT1 gene cluster, and on genetic heterogeneity of this region in the human population. Methods and results While previously investigated mice were deficient in the entire NEAT1 or MALAT1 locus, we here aimed to selectively disrupted only the novel 59-nt tRNA-like transcript “menRNA” with hitherto unknown functions. Through CRISPR/Cas9 editing we developed 4 human THP-1 monocyte-macrophage cell line clones with deletions of different extension all of which prevented, however, normal transcript folding and formation of “menRNA”. Transcriptome mapping of all clones by RNA-sequencing identified dysregulation of innate immunity-related genes (IFI16, IFITM3, IRAK3, IRF2BP2, IRF3), chemokine and interleukin receptors (CCR10, IL11RA, IL12RB2, IL23A), cell surface receptors (CD37, CD40LG, CD72, FOCAD, ITGA6, MAEA, THY1), macrophage function-associated genes (ELANE, GRN, MIF, MMP25, MST1P2, PRTN3), tRNA-processing transcripts (GARS, QRSL1P3, QTRT1P1, THG1L, VARS), and small nucleolar RNAs (SNORA26.62.64, SNORD65.112). These data and functional assays indicate functions of NEAT1-derived “menRNA” distinct from those previously described for MALAT1-derived mascRNA. As multiple data suggest inflammation control functions of the NEAT1-MALAT1 region, we investigated the extent of genetic variability of this region in humans. In cohorts from the SHIP study coordinated by the Institute for Community Medicine Greifswald, screening of this region for sequence variants and possible phenotype associations was conducted the results of which are given in Figure 1. Consistent with prior findings, a MALAT1 SNP with very low minor allele frequency (MAF=0.01) was associated (p=0.0062) with systemic low level inflammation (CRP >3.0 mg/L). Unexpected was the association (p<0.01) of eight SNPs (low MAF=0.09 for all) with BMI >35 kg/m2 and LDL >164 mg/dl. Conclusions First, selective disruption of menRNA formation in human monocyte-macrophages provides evidence that this novel type of noncoding RNA has immunoregulatory functions. Second, the phenotype associations of SNPs within the NEAT1-MALAT1 gene cluster warrant further in-depth investigation of the molecular basis of these associations, and of their allele frequencies in cardiovascular disease patient cohorts. The first three and the last authors contributed equally to this work. Figure 1 Funding Acknowledgement Type of funding source: Other. Main funding source(s): “Transcriptome analysis of circulating immune cells to improve the assessment of prognosis and the response to novel anti-inflammatory treatments after myocardial infarction”; DZHK Shared Expertise project B19-006_SE FKZ 81X2100257


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Alessandro Allegra ◽  
Manuela Mania ◽  
Angela D’Ascola ◽  
Giacomo Oteri ◽  
Enrico Nastro Siniscalchi ◽  
...  

Bisphosphonates (BPs) are inhibitors of osteoclast-mediated bone resorption used for the treatment of multiple myeloma (MM) patients with osteolytic lesions. Bisphosphonate-induced osteonecrosis of the jaw (BONJ) is an infrequent drug-caused adverse event of these agents. Long noncoding RNAs (lncRNAs) are a set of more than 200 base pairs, noncoding RNA molecules, which are critical posttranscriptional regulators of gene expression. Our study was aimed at evaluating 17 lncRNAs, whose targets were previously validated as key elements in MM, bone metabolism, and angiogenesis in MM subjects without BONJ (MM group), in MM subjects with BONJ (BONJ group), and a group of healthy controls (CTRL group). Our results demonstrated a different lncRNA profile in BONJ patients compared to MM patients and controls. Two lncRNAs (DANCR and MALAT1) were both downregulated compared to controls and MM, twelve (HOTAIR, MEG3, TP73-AS1, HOTTIP, HIF1A-AS2, MANTIS, CTD-2201E18, CTD1-2003C8, R-471B22, RP1-43E13, RP11-553L6.5, and RP1-286D6) were overexpressed in MM with BONJ, and one (H19) was upregulated compared with only MM. Two lncRNAs (JHDMD1 and MTMR9LP) had higher expression, but these differences were not statistically significant. The examined lncRNAs target several genes and metabolic pathways. An altered lncRNA signature could contribute to the onset of BONJ or have a protective action. Targeting these lncRNAs could offer a possibility for the prevention or therapy of BONJ.


2020 ◽  
Vol 27 (2) ◽  
pp. 66-71
Author(s):  
Ozal Arzuman Beylerli ◽  
Ilgiz F. Gareev ◽  
Valentin N. Pavlov

MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that negatively regulate gene expression at posttranscriptional levels. MiRNAs regulate many normal physiological processes, and also play an important role in the development of most disorders. The expression levels of miRNAs are characterized by endogenous properties and tissue specificity. These characteristics increase the likelihood that miRNAs can serve as useful clinical biomarkers in the diagnosis of certain diseases. Chronic lower back pain is usually associated with degeneration of the intervertebral disc (IDD), which is closely associated with apoptosis, impaired extracellular matrix, cell proliferation, and an inflammatory response. This process is characterized by a cascade of molecular, cellular, biochemical, and structural changes. Currently, there is no clinical therapy that shows the pathophysiology of disk degeneration. The presence of unregulated expression of miRNA in patients with degenerative disk disease indicates a vital role of miRNAs in the pathogenesis of IDD. It becomes apparent that epigenetic processes affect the evolution of IDD as much as the genetic background. Deregulated phenotypes of pulp nucleus cells, including differentiation, migration, proliferation, and apoptosis, are involved in all stages of the progression of human IDD. In this review, we will focus on the role and therapeutic value of miRNAs in IDD.


Sign in / Sign up

Export Citation Format

Share Document