scholarly journals Semaphorins in Adult Nervous System Plasticity and Disease

2021 ◽  
Vol 13 ◽  
Author(s):  
Daniela Carulli ◽  
Fred de Winter ◽  
Joost Verhaagen

Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.

2017 ◽  
Author(s):  
Serena Martinelli ◽  
Vanessa D'Antongiovanni ◽  
Susan Richter ◽  
Letizia Canu ◽  
Tonino Ercolino ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Jian-kai Yang ◽  
Hong-jiang Liu ◽  
Yuanyu Wang ◽  
Chen Li ◽  
Ji-peng Yang ◽  
...  

Background and Objective: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment.Methods:The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot.Results:We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting.Conclusion:Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.


2021 ◽  
pp. 1-8
Author(s):  
Haifeng Xia ◽  
Fang Hu ◽  
Liangbin Pan ◽  
Chengcheng Xu ◽  
Haitao Huang ◽  
...  

BACKGROUND: EC (esophageal cancer) is a common cancer among people in the world. The molecular mechanism of FAM196B (family with sequence similarity 196 member B) in EC is still unclear. This article aimed to clarify the role of FAM196B in EC. METHODS: The expression of FAM196B in EC tissues was detected using qRT-PCR. The prognosis of FAM196B in EC patients was determined by log-rank kaplan-Meier survival analysis and Cox regression analysis. Furthermore, shRNA was used to knockdown the expression of FAM196B in EC cell lines. MTT, wound healing assays and western blot were used to determine the role of FAM196B in EC cells. RESULTS: In our research, we found that the expression of FAM196B was up-regulated in EC tissues. The increased expression of FAM196B was significantly correlated with differentiation, lymph node metastasis, stage, and poor survival. The proliferation and migration of EC cells were inhibited after FAM196B-shRNA transfection in vitro and vivo. The western blot result showed that FAM196B could regulate EMT. CONCLUSION: These results suggested that FAM196B severs as an oncogene and promotes cell proliferation and migration in EC. In addition, FAM196B may be a potential therapeutic target for EC patients.


Author(s):  
Richard A. Seidu ◽  
Min Wu ◽  
Zhaoliang Su ◽  
Huaxi Xu

Gliomas represent 60% of primary intracranial brain tumors and 80% of all malignant types, with highest morbidity and mortality worldwide. Although glioma has been extensively studied, the molecular mechanisms underlying its pathology remain poorly understood. Clarification of the molecular mechanisms involved in their development and/or treatment resistance is highly required. High mobility group box 1 protein (HMGB1) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation and migration, through receptor for advanced glycation end products and toll like receptors in a number of cancers including gliomas. It is known that excessive release of HMGB1 in cancer leads to unlimited replicative potential, ability to develop blood vessels (angiogenesis), evasion of programmed cell death (apoptosis), self-sufficiency in growth signals, insensitivity to inhibitors of growth, inflammation, tissue invasion and metastasis. In this review we explore the mechanisms by which HMGB1 regulates apoptosis and autophagy in glioma. We also looked at how HMGB1 mediates glioma regression and promotes angiogenesis as well as possible signaling pathways with an attempt to provide potential therapeutic targets for the treatment of glioma.


2018 ◽  
Vol 315 (6) ◽  
pp. L965-L976 ◽  
Author(s):  
Zhengjiang Qian ◽  
Yanjiao Li ◽  
Haiyang Yang ◽  
Jidong Chen ◽  
Xiang Li ◽  
...  

Platelet-derived growth factor (PDGF) can induce hyperproliferation of pulmonary artery smooth muscle cells (PASMCs), which is a key causative factor to the occurrence and progression of pulmonary arterial hypertension (PAH). We previously identified that miR-1181 is significantly downregulated by PDGFBB in human PASMCs. In this work, we further explore the function of miR-1181 and underlying regulatory mechanisms in PDGF-induced PASMCs. First, the expression pattern of miR-1181 was characterized under PDGFBB treatment, and PDGF receptor/PKCβ signaling was found to repress miR-1181 expression. Then, gain- and loss-of-function experiments were respectively conducted and revealed the prominent role of miR-1181 in inhibiting PASMC proliferation and migration. Flow cytometry analysis suggested that miR-1181 regulated the PASMC proliferation through influencing the cell cycle transition from G0/G1 to S phase. Moreover, we exhibited that miR-1181 targeting STAT3 formed a regulatory axis to modulate PASMC proliferation. Finally, serum miR-1181 expression was also observed to be reduced in adult and newborn patients with PAH. Overall, this study provides novel findings that the miR-1181/STAT3 axis mediated PDGFBB-induced dysfunction in human PASMCs, implying a potential use of miR-1181 as a therapeutic and diagnostic candidate for the vascular remodeling diseases.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Chen-Chu Lin ◽  
Tsung-Ying Yang ◽  
Hseuh-Ju Lu ◽  
Chen-Kai Wan ◽  
Shih-Lan Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document