scholarly journals Mechanisms Governing Metabolic Heterogeneity in Breast Cancer and Other Tumors

2021 ◽  
Vol 11 ◽  
Author(s):  
Sayani Patra ◽  
Naveed Elahi ◽  
Aaron Armorer ◽  
Swathi Arunachalam ◽  
Joshua Omala ◽  
...  

Reprogramming of metabolic priorities promotes tumor progression. Our understanding of the Warburg effect, based on studies of cultured cancer cells, has evolved to a more complex understanding of tumor metabolism within an ecosystem that provides and catabolizes diverse nutrients provided by the local tumor microenvironment. Recent studies have illustrated that heterogeneous metabolic changes occur at the level of tumor type, tumor subtype, within the tumor itself, and within the tumor microenvironment. Thus, altered metabolism occurs in cancer cells and in the tumor microenvironment (fibroblasts, immune cells and fat cells). Herein we describe how these growth advantages are obtained through either “convergent” genetic changes, in which common metabolic properties are induced as a final common pathway induced by diverse oncogene factors, or “divergent” genetic changes, in which distinct factors lead to subtype-selective phenotypes and thereby tumor heterogeneity. Metabolic heterogeneity allows subtyping of cancers and further metabolic heterogeneity occurs within the same tumor mass thought of as “microenvironmental metabolic nesting”. Furthermore, recent findings show that mutations of metabolic genes arise in the majority of tumors providing an opportunity for the development of more robust metabolic models of an individual patient’s tumor. The focus of this review is on the mechanisms governing this metabolic heterogeneity in breast cancer.

Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


Author(s):  
Abdel Qader Al Bawab ◽  
Malek Zihlif ◽  
Yazan Jarrar ◽  
Ahmad Saleh

Background: Hypoxia (deprived oxygen in tissues) may induce molecular and genetic changes in cancer cells. Objective: Investigating the genetic changes of glucose metabolism in breast cancer cell line (MCF7) after exposure to continuous hypoxia (10 and 20 cycles exposure of 72 hours continuously on a weekly basis). Method: Gene expression of MCF7 cells was evaluated using real-time polymerase chain reaction- array method. Furthermore, cell migration and wound healing assays were also applied. Results: It was found that 10 episodes of continuous hypoxia activated Warburg effect in MCF7 cells via the significant up-regulation of genes involved in glycolysis (ANOVA, p value < 0.05). The molecular changes were associated with the ability of MCF7 cells to divide and migrate. Interestingly, after 20 episodes of continuous hypoxia, the expression glycolysis mediated genes has dropped significantly (from 30 to 9 folds). This could be attributed to the adaptive ability of cancer cells. Conclusion: It is concluded that 10 hypoxic episodes increased the survival rate and the aggressiveness of MCF7 cells and induced Warburg effect by up-regulation of the glycolysis mediating genes expression.


2021 ◽  
Vol 22 (14) ◽  
pp. 7430
Author(s):  
Hiromi Sato ◽  
Ayaka Shimizu ◽  
Toya Okawa ◽  
Miaki Uzu ◽  
Momoko Goto ◽  
...  

The role of astrocytes in the periphery of metastatic brain tumors is unclear. Since astrocytes regulate central nervous metabolism, we hypothesized that changes in astrocytes induced by contact with cancer cells would appear in the metabolome of both cells and contribute to malignant transformation. Coculture of astrocytes with breast cancer cell supernatants altered glutamate (Glu)-centered arginine–proline metabolism. Similarly, the metabolome of cancer cells was also altered by astrocyte culture supernatants, and the changes were further amplified in astrocytes exposed to Glu. Inhibition of Glu uptake in astrocytes reduces the variability in cancer cells. Principal component analysis of the cancer cells revealed that all these changes were in the first principal component (PC1) axis, where the responsible metabolites were involved in the metabolism of the arginine–proline, pyrimidine, and pentose phosphate pathways. The contribution of these changes to the tumor microenvironment needs to be further pursued.


2021 ◽  
Author(s):  
Ping Zhou ◽  
Bo Liu ◽  
Mingming Luan ◽  
Na Li ◽  
Bo Tang

Cancer cell migration and invasion are initial steps for tumor metastasis that increases patient mortality. Tumor microenvironment is characterized by hypoxic and low nutrient-containing. Previous studies have suggested that hypoxia...


2020 ◽  
Vol 21 (7) ◽  
pp. 2313 ◽  
Author(s):  
Giuseppina Roscigno ◽  
Assunta Cirella ◽  
Alessandra Affinito ◽  
Cristina Quintavalle ◽  
Iolanda Scognamiglio ◽  
...  

Breast cancer is the most frequent malignancy in females in terms of both incidence and mortality. Underlying the high mortality rate is the presence of cancer stem cells, which divide indefinitely and are resistant to conventional chemotherapies, so causing tumor relapse. In the present study, we identify miR-216a-5p as a downregulated microRNA in breast cancer stem cells vs. the differentiated counterpart. We demonstrate that overexpression of miR-216a-5p impairs stemness markers, mammosphere formation, ALDH activity, and the level of Toll-like receptor 4 (TLR4), which plays a significant role in breast cancer progression and metastasis by leading to the release of pro-inflammatory molecules, such as interleukin 6 (IL-6). Indeed, miR-216a regulates the crosstalk between cancer cells and the cells of the microenvironment, in particular cancer-associated fibroblasts (CAFs), through regulation of the TLR4/IL6 pathway. Thus, miR-216a has an important role in the regulation of stem phenotype, decreasing stem-like properties and affecting the cross-talk between cancer cells and the tumor microenvironment.


2016 ◽  
Vol 1 (1) ◽  
pp. 48
Author(s):  
Khemraj Singh Baghel ◽  
Smrati Bhadauria

Metastatic breast cancer is a stage of breast cancer wherever the disease has spread to distant parts of the body. Onset of metastasis is one of the biggest obstacles to the successful treatment of cancer. The potential of a tumor cell to metastasize profoundly depends on its microenvironment, or “niche” interactions with local components. Macrophages provide tropic support to tumors. Resident macrophages contribute a set of common functions, including their capability to defend against microbial infections, to maintain normal cell turnover and tissue remodelling, and to help repair sites of injury. Macrophages are recruited into the tumor microenvironment where they differentiate to become Tumor-associated-macrophages (TAMs). TAMs are the most abundant subpopulation of tumor-stroma and actively drive cancer cell invasion and metastasis. Cancer metastasis is not solely regulated by the deregulation of metastasis promoting or suppressing genes in cancer cells. Recently the interaction between the stromal cells and cancer cells has been demonstrated to promote cancer metastasis. TAMs can advocate epithelial-mesenchymal transition of cancer cells. Loss of e-cadherin, a major phenomenon of epithelial to mesenchymal transition (EMT), reduces adhesiveness and releases cancer cells to distant (secondary) sites. A positive correlation between tumor progression and the expression of matrix metallo proteinases (MMPs) in tumor tissues has been demonstrated in numerous human and animal studies. The dynamic interactions of cancer-cells with TAMs actively promote invasion-metastasis cascade through intercellular-signalling-networks that need better elucidation.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 274-274
Author(s):  
Courtney Merrick ◽  
Lauren Housley

Abstract Objectives Triple-negative breast cancer (TNBC) comprises 10–20% of breast cancer cases. It is particularly aggressive with limited and deleterious treatment options. Increasingly, research confirms that communication between cancer cells and neighboring macrophages promotes disease progression in part by secretion of cytokines that increase tumor cell proliferation, invasion, and metastasis. Sulforaphane (SFN) is a chemopreventive phytochemical found in cruciferous vegetables (broccoli) shown to alter cytokine secretion in macrophages and breast cancer cells grown in single culture. However, its effect in the tumor microenvironment remains unclear. This study aims to characterize cytokine profiles in media where TNBC cells and macrophages are grown in coculture with and without SFN treatment. We expect SFN to modify cytokine secretions in coculture media, suggesting SFN may disrupt vital cell-cell signaling needed for cancer progression. Methods TNBC cells (MDA-MB-231) were grown in Transwell plates with and without macrophages (THP-1 cells differentiated with PMA). Cell cultures (n = 3) were treated with either 15 μM SFN, DMSO (vehicle-control), or a non-treatment control. Cytokine levels were evaluated in media at 24 and 48 hours after treatment using BioPlex 2000 assay. Results Treatment with sulforaphane significantly reduced the levels of several targets in coculture including IL-1ra, IL-4, IL-5, IL-10, IL-12, IL-13, IL-15, IL-17, CCL2 (MCP-1), CCL11, CCL22, CCL26, CXCL12, IFN-y, G-CSF, GM-CSF, Eotaxin, and VEGF. Conversely, MIF was elevated following treatment. Effects were discovered at 24-hour and 48-hour time points. Conclusions We demonstrated that SFN altered the levels of numerous cellular signaling proteins in cancer cell-macrophage coculture, many of which are known to be involved with breast cancer progression. These results reveal mechanistic links underlying SFNs chemopreventive function and bolster SFNs potential as a treatment strategy for TNBC. Funding Sources Department of Nutrition and Food Science, CSU Chico; Graduate Studies, CSU Chico; CSUPERB: CSU Program for Education and Research in Biotechnology.


Sign in / Sign up

Export Citation Format

Share Document