scholarly journals GPI Is a Prognostic Biomarker and Correlates With Immune Infiltrates in Lung Adenocarcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Jiahui Han ◽  
Xinzhou Deng ◽  
Renhuang Sun ◽  
Ming Luo ◽  
Meng Liang ◽  
...  

BackgroundGlucose-6-phosphate isomerase (GPI) plays an important role in glycolysis and gluconeogenesis. However, the role of GPI in lung adenocarcinoma (LUAD) remains unclear.MethodsAll original data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated via R 3.2.2. GPI expression was explored with TCGA, GEO, and Oncomine databases. Immunohistochemistry staining was used to analyze GPI expression in clinical specimens. The correlations between GPI and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. GPI-specific siRNAs were used to verify the role of GPI expression on cell proliferation and cell cycle distribution.ResultsIn general, GPI is predominantly overexpressed and has reference value in the diagnosis and prognostic estimation of LUAD. Upregulated GPI was associated with poorer overall survival, clinical stage, N stage, and primary therapy outcome in LUAD. Mechanistically, we identified a hub gene that included a total of 56 GPI-related genes, which were tightly associated with the cell cycle pathway in LUAD patients. Knockdown of GPI induced cell proliferation inhibition and cell cycle arrest. GPI expression was positively correlated with infiltrating levels of Th2 cells and regulatory T cells (Tregs); in contrast, GPI expression was negatively correlated with infiltrating levels of CD8+ T cells, central memory T cells, dendritic cells, macrophages, mast cells, and eosinophils. GPI was negatively correlated with the expression of immunostimulators, such as CD40L, IL6R, and TMEM173, in LUAD.ConclusionGPI may play an important role in the cell cycle and can be used as a prognostic biomarker for determining the prognosis and immune infiltration in LUAD.

2020 ◽  
Vol 16 (25) ◽  
pp. 1911-1920
Author(s):  
Feifei Chu ◽  
Yuanbo Cui ◽  
Kunkun Li ◽  
Xingguo Xiao ◽  
Li Zhang ◽  
...  

Aim: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. This study aimed to investigate the role of long noncoding RNA THOR in CRC. Materials & methods: The expression of THOR in 103 cases of CRC tissues and four CRC cell lines was examined by quantitative real-time PCR. Cell counting kit-8 and colony formation assays were applied to detect cell proliferation, and flow cytometry was used for testing cell cycle and apoptosis of CRC. Results: We found that THOR was highly expressed in CRC and correlated with tumor node metastasis stage, histological subtype, tumor size and differentiation and survival in CRC patients. Meanwhile, knockdown of THOR significantly suppressed cell proliferation and cell cycle of CRC, whereas promoted cell apoptosis. Conclusion: Our findings suggest that THOR is an oncogenic long noncoding RNA in CRC and a potential prognostic biomarker for this cancer.


Author(s):  
Georgios I. Laliotis ◽  
Evangelia Chavdoula ◽  
Maria D. Paraskevopoulou ◽  
Abdul D. Kaba ◽  
Alessandro La Ferlita ◽  
...  

AbstractOur previous studies have shown that IWS1 (Interacts with Spt6) is a phosphorylation target of AKT and regulates the alternative RNA splicing of FGFR2, linking IWS1 with human Non-Small Cell Lung Cancer. To further address the role of IWS1 in alternative RNA splicing in lung cancer, we performed an RNA-seq study using lung adenocarcinoma cells in which IWS1 was knocked down or replaced by its phosphorylation site mutant. The results identified a novel, exon 2 deficient splice variant of the splicing factor U2 Associated-Factor 2 (U2AF2), whose abundance increases, upon the loss of phosphorylated IWS1. This exon encodes part of the U2AF65 Serine-Rich (RS) Domain, which is required for its binding with pre-mRNA Processing factor 19 (Prp19). Here, we show that U2AF2 exon 2 inclusion depends on phosphorylated IWS1, by promoting Histone H3K36 trimethylation and the assembly of LEDGF/SRSF1 splicing complexes, in a cell-cycle specific manner. Inhibition of the pathway results in the downregulation of cell cycle division associated 5 (CDCA5), a phosphorylation target and regulator of ERK, leading to G2/M phase arrest, impaired cell proliferation and tumor growth in mouse xenografts models, an effect more pronounced in EGFR mutant cells. Analysis of lung adenocarcinoma samples revealed strong correlations between IWS1 phosphorylation, U2AF2 RNA splicing, and Sororin/p-ERK levels, especially in EGFR, as opposed to KRAS mutant patients. More importantly, IWS1 phosphorylation and U2AF2 RNA splicing pattern are positively correlated with tumor stage, grade, relapse and metastasis, and associated with poor survival in lung adenocarcinoma patients, harboring EGFR, but not KRAS, mutations. This work highlights the instrumental role of the AKT/p-IWS1 axis to alternative RNA splicing in governing cell cycle progression and tumorigenesis, and proposes this axis as a novel drug target in EGFR mutant lung adenocarcinoma, by concomitantly affecting the epigenetic regulation of RNA processing and oncogenic signals.


2021 ◽  
Author(s):  
Gujie Wu ◽  
Wenmiao Wang ◽  
Zheng Yang ◽  
Qun Xue

Abstract Background ARNTL2 is a member of the PAS superfamily that promotes tumor progression. However, the role of ARNTL2 in lung adenocarcinoma (LUAD) remains unclear. The purpose of our study was to investigate the function of ARNTL2 in LUAD. Methods The expression, clinical features, and prognostic role of ARNTL2 in pan-cancer were evaluated using The Cancer Genome Atlas and Genotype-Tissue Expression data. GSEA and GSVA of ARNTL2 were performed using the R package “clusterProfiler.” The correlation between immune cell infiltration level and ARNTL2 expression was analyzed using two sources of immune cell infiltration data, including the TIMER2 and ImmuCellAI database. Finally,we analyzed the correlation between ARNTL2 and IC50 of 192 drugs. Results ARNTL2 was substantially overexpressed in LUAD and pan-cancer. High ARNTL2 expression predicted poor survival in patients with LUAD. We also found that ARNTL2 expression was positively associated with the infiltration levels of immunosuppressive cells, such as tumor associated macrophages, cancer associated fibroblasts and Tregs. Among the 192 anti-cancer drugs, ARNTL2 expression was positively correlated with IC50 of 114 anti-cancer drugs, such as SB505124, Doramapimod, Nutlin-3a (-), Sabutoclax, AZD5991, PF-4708671, Elephantin, PRIMA-1MET, Sorafenib, Vorinostat, and MK-2206. Conclusions Our results revealed that ARNTL2 is a potential prognostic biomarker in LUAD. An elevated ARNTL2 expression indicates an immunosuppressive microenvironment, and targeted therapies against ARNTL2 have excellent potential.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fang Miao ◽  
Zhiguo Lou ◽  
Shuhua Ji ◽  
Dan Wang ◽  
Yaolan Sun ◽  
...  

PurposeAbnormal CLEC9A expression is concerned with carcinogenesis. However, the role of CLEC9A in lung adenocarcinoma (LUAD) remains unknown. The goal of this study was to reveal the role of CLEC9A in LUAD based on bioinformatics and cellular functional experiments.Materials and methodsData available from The Cancer Genome Atlas (TCGA) were employed to study CLEC9A expression and mutations in LUAD. Expression and alterations of CLEC9A were analyzed using UALCAN and cBioPortal, respectively. Kaplan–Meier analysis was used to analyze the effect of CLEC9A on the survival of LUAD. Protein–protein interaction (PPI) network was built using GeneMANIA analysis. The similar genes of CLEC9A were obtained using GEPIA analysis, while co-expression genes correlated with CLEC9A were identified using LinkedOmics analysis. The effects of CLEC9A expression on immune cell infiltration was assessed. The effect of CLEC9A on the proliferation, apoptosis, cell cycle distribution, and invasion of human LUAD cells was detected in the LUAD cell line.ResultsCLEC9A was downregulated and the CLEC9A gene was often altered in LUAD. The survival of LUAD patients was correlated with the expression level of CLEC9A. The similar genes of CLEC9A were linked to functional networks involving positive regulation of interleukin-12 production, plasma membrane and CD40 receptor binding, primary immunodeficiency, intestinal immune network for IgA production, and cell adhesion molecules pathways. Cell cycle, apoptosis, EMT, and RAS/MAPK were significantly enriched pathways in positive and negative correlation genes with CLEC9A. A difference in the immune infiltration level of immune cell between the high and low CLEC9A expression groups was observed. Somatic cell copy number alternations (CNAs) of the CLEC9A, including arm-level gain and arm-level deletion, observably changed the infiltration levels of B cells, CD4+ T cells, macrophages, and neutrophils in LUAD. Except for LAG3, the expression of CD274, CTLA4, PDCD1, and TIGIT was positively correlated with the expression level of CLEC9A. After transfection, overexpression and knockdown of CLEC9A could affect the proliferation, apoptosis, cell cycle distribution, and invasion of LUAD cells.ConclusionCLEC9A is associated with prognosis and tumor immune microenvironment of LUAD, suggesting that CLEC9A may be considered as a novel biomarker for LUAD.


2021 ◽  
Vol 13 (1) ◽  
pp. 17-29
Author(s):  
Emann M Rabie ◽  
Sherry X Zhang ◽  
Andreas P Kourouklis ◽  
A Nihan Kilinc ◽  
Allison K Simi ◽  
...  

Abstract Metastasis, the leading cause of mortality in cancer patients, depends upon the ability of cancer cells to invade into the extracellular matrix that surrounds the primary tumor and to escape into the vasculature. To investigate the features of the microenvironment that regulate invasion and escape, we generated solid microtumors of MDA-MB-231 human breast carcinoma cells within gels of type I collagen. The microtumors were formed at defined distances adjacent to an empty cavity, which served as an artificial vessel into which the constituent tumor cells could escape. To define the relative contributions of matrix degradation and cell proliferation on invasion and escape, we used pharmacological approaches to block the activity of matrix metalloproteinases (MMPs) or to arrest the cell cycle. We found that blocking MMP activity prevents both invasion and escape of the breast cancer cells. Surprisingly, blocking proliferation increases the rate of invasion but has no effect on that of escape. We found that arresting the cell cycle increases the expression of MMPs, consistent with the increased rate of invasion. To gain additional insight into the role of cell proliferation in the invasion process, we generated microtumors from cells that express the fluorescent ubiquitination-based cell cycle indicator. We found that the cells that initiate invasions are preferentially quiescent, whereas cell proliferation is associated with the extension of invasions. These data suggest that matrix degradation and cell proliferation are coupled during the invasion and escape of human breast cancer cells and highlight the critical role of matrix proteolysis in governing tumor phenotype.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2021 ◽  
Vol 22 (14) ◽  
pp. 7374
Author(s):  
Changwu Wu ◽  
Yingjuan Duan ◽  
Siming Gong ◽  
Sonja Kallendrusch ◽  
Nikolas Schopow ◽  
...  

Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors’ entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as “cell cycle” and “RNA transport” were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.


2021 ◽  
Author(s):  
Bo Cao ◽  
Huan Deng ◽  
Hao Cui ◽  
Ruiyang Zhao ◽  
Hanghang Li ◽  
...  

Abstract Background Phosphoglucomutase 1 (PGM1) acts as an important regulator in glucose metabolism. However, the role of PGM1 in gastric cancer (GC) remains unclear. This study aims to investigate the role of PGM1 and develop novel regimens based on metabolic reprogramming in GC. MethodsCorrelation and enrichment analysis of PGM1 was conducted based on The Cancer Genome Atlas database. Data derived from the Kaplan-Meier Plotter database were analyzed for correlations between PGM1 expression and survival time of GC patients. CCK-8, EdU, flow cytometry assays, generation of subcutaneous tumor and lung metastasis mouse models were used to determine growth and metastasis in vitro and in vivo. Cell glycolysis was detected by a battery of glycolytic indicators, including lactate, pyruvic acid, ATP production and glucose uptake. Fatty Acid Synthase (FASN) activity and detection of lipid regulators levels by western blot were used to reflect on the cell lipid metabolism. ResultsCorrelation and enrichment analysis suggested that PGM1 was closely associated with cell proliferation and metabolism. PGM1 was overexpressed in GC tissues and cell lines. High PGM1 expression served as an indicator of shorter survival for specific subpopulation of GC patients, which was also correlated with some clinicopathological features, including T stage and TNM stage. Under low glucose conditions, knockdown of PGM1 significantly suppressed cell proliferation and glycolysis levels, whereas lipid metabolism was enhanced. Orlistat, as a drug that was designed to inhibit FASN activity for obesity treatment, effectively induced apoptosis, suppressed FASN activity. However, orlistat conversely increased glycolytic levels in GC cells. Orlistat exhibited more significant inhibitive effects on GC progression after knockdown of PGM1 under glucose deprivation due to combination of glycolysis and lipid metabolism. ConclusionsDownregulation of PGM1 expression under glucose deprivation synergistically enhanced anti-cancer effects of orlistat. This combination application may serve as a novel strategy for GC treatment.


2021 ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document