scholarly journals Network Pharmacology and Pharmacological Evaluation Reveals the Mechanism of the Sanguisorba Officinalis in Suppressing Hepatocellular Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Jiang ◽  
Hong Li ◽  
Yueshan Sun ◽  
Jing Zeng ◽  
Fei Yang ◽  
...  

Background:Sanguisorba Officinalis L. (SO) is a well-known traditional Chinese medicine (TCM), commonly applied to treat complex diseases, such as anticancer, antibacterial, antiviral, anti-inflammatory, anti-oxidant and hemostatic effects. Especially, it has been reported to exert anti-tumor effect in various human cancers. However, its effect and pharmacological mechanism on hepatocellular carcinoma (HCC) remains unclear.Methods: In this study, network pharmacology approach was applied to characterize the underlying mechanism of SO on HCC. Active compounds and potential targets of SO, as well as related genes of HCC were obtained from the public databases, the potential targets and signaling pathways were determined by protein-protein interaction (PPI), gene ontology (GO) and pathway enrichment analyses. And the compound-target and target-pathway networks were constructed. Subsequently, in vitro experiments were also performed to further verify the anticancer effects of SO on HCC.Results: By using the comprehensive network pharmacology analysis, 41 ingredients in SO were collected from the corresponding databases, 12 active ingredients screened according to their oral bioavailability and drug-likeness index, and 258 potential targets related to HCC were predicted. Through enrichment analysis, SO was found to show its excellent therapeutic effects on HCC through several pathways, mainly related to proliferation and survival via the EGFR, PI3K/AKT, NFκB and MAPK signaling pathways. Additionally, in vitro, SO was found to inhibit cell proliferation, induce apoptosis and down-regulate cell migration and invasion in various HCC cells. Moreover, western blot analysis showed that SO treatment down-regulated the expression of p-EGFR, p-PI3K, p-AKT, p-NFκB and p-MAPK proteins in HepG2 cells. These results validated that SO exerted its therapeutic effects on HCC mainly by the regulation of cell proliferation and survival via the EGFR/MAPK and EGFR/PI3K/AKT/NFκB signaling pathways.Conclusion: Taken together, this study, revealed the anti-HCC effects of SO and its potential underlying therapeutic mechanisms in a multi-target and multi-pathway manner.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanfei Wei ◽  
Yuning Lin ◽  
Wanjun Chen ◽  
Shasha Liu ◽  
Lijie Jin ◽  
...  

Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor and the second leading cause of cancer-related death in the world. Plumbagin (PL) is a small molecule naphthoquinone compound isolated from Plumbago zeylanica L. that has important anticancer properties, but its mechanism requires further investigation. In this study, we used a comprehensive network pharmacology approach to study the mechanism of action of PL for the treatment of HCC. The method includes the construction of multiple networks; moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify biological processes and signaling pathways. Subsequently, in vitro experiments were performed to verify the predicted molecular mechanisms obtained from the network pharmacology-based analysis. Network pharmacological analysis showed that PL may exert anti-HCC effects by enhancing reactive oxygen species (ROS) production to generate oxidative stress and by regulating the PI3K/Akt and MAPK signaling pathways. In vitro experiments confirmed that PL mainly mediates the production of ROS, regulates the PI3K/Akt and MAPK signaling pathways to promote apoptosis and autophagy, and shows significant therapeutic effects on HCC. In conclusion, our work proposes a comprehensive systems pharmacology approach to explore the potential mechanism of PL for the treatment of HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Ba ◽  
Ying Huang ◽  
Pan Shen ◽  
Yao Huang ◽  
Hui Wang ◽  
...  

Background: Wutou Decoction (WTD), as a classic prescription, has been generally used to treat rheumatoid arthritis (RA) for two thousand years in China. However, the potential protective effects of WTD on rheumatoid arthritis and its possible mechanism have rarely been reported.Purpose: The aim of this study was to explore the possible mechanism of WTD against RA and a promising alternative candidate for RA therapy.Methods: A model of collagen-induced arthritis (CIA) was constructed in rats to assess the therapeutic effects of WTD. Histopathological staining, immunofluorescence, and western blotting of synovial sections were conducted to detect the antiangiogenic effects of WTD. Then, cell viability assays, flow cytometry, scratch healing assays, and invasion assays were conducted to explore the effects of WTD on MH7A human fibroblast-like synoviocyte (FLS) cell proliferation, apoptosis, migration, and invasion in vitro. The ability of WTD to induce blood vessel formation after MH7A cell and human umbilical vein endothelial cell line (HUVEC) coculture with WTD intervention was detected by a tube formation assay. The mechanisms of WTD were screened by network pharmacology and confirmed by in vivo and in vitro experiments.Results: WTD ameliorated the symptoms and synovial pannus hyperplasia of CIA rats. Treatment with WTD inhibited MH7A cell proliferation, migration, and invasion and promoted MH7A apoptosis. WTD could inhibit MH7A cell expression of proangiogenic factors, including VEGF and ANGI, to induce HUVEC tube formation. Furthermore, the PI3K-AKT-mTOR-HIF-1α pathway was enriched as a potential target of WTD for the treatment of RA through network pharmacology enrichment analysis. Finally, it was confirmed in vitro and in vivo that WTD inhibits angiogenesis in RA by interrupting the PI3K-AKT-mTOR-HIF-1α pathway.Conclusion: WTD can inhibit synovial hyperplasia and angiogenesis, presumably by inhibiting the migration and invasion of MH7A cells and blocking the production of proangiogenic effectors in MH7A cells. The possible underlying mechanism by which WTD ameliorates angiogenesis in RA is the PI3K-AKT-mTOR-HIF-1α pathway.


2021 ◽  
Author(s):  
Yang Han ◽  
Zhe Li ◽  
Qi Wu ◽  
Hui Liu ◽  
Zhiqiang Sun ◽  
...  

Abstract Background: B4GALT5 is postulated to be an important protein in sugar metabolism that catalyzes the synthesis of lactosylceramide (LacCer). However, its role in hepatocellular carcinoma (HCC) remains unknown.Method: We characterized the expression of B4GALT5 in HCC tissue compared to normal tissue, and explored its function of B4GALT5 in HCC by enrichment analysis based on its co-expressed gene set. Next, we checked whether B4GALT5 expression is correlated to immune infiltration level and clinical prognosis in hepatocellular carcinoma. Finally, we verified the expression of B4GALT5 using clinical samples evaluated by RT-PCR, and conducted in vitro experiments with B4GALT5-knockdown HCC cells to investigate the function of B4GALT5 in the HCC cell proliferation, migration and invasion.Results: We found B4GALT5 mRNA and protein expression levels were significantly high in HCC tissue compared to normal tissue. The enrichment analysis of the gene sets that co-expressed with B4GALT5 showed specificity in HCC-related pathways and functions. Also, the expression pattern of B4GALT5 was significantly related to the immune infiltration level, especially CD4+ T cell and macrophage cells. B4GALT5 higher mRNA expression was associated with poor overall survival (OS) in HCC patients. Furthermore, In vitro experiments showed that depletion of B4GALT5 significantly inhibited HCC cell proliferation, migration and invasion. This study revealed the function and its mediated pathways of B4GALT5 in HCC, indicating that B4GALT5 may serve as a prognostic biomarker of HCC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yong Zhang ◽  
Zhengxia Zha ◽  
Wenhua Shen ◽  
Dan Li ◽  
Naixin Kang ◽  
...  

Abstract Background Despite the increased morbidity of ulcerative colitis (UC) in the developing countries, available treatments remain unsatisfactory. Therefore, it is urgent to discover more effective therapeutic strategies. Pulsatilla chinensis was widely used for the treatment of inflamed intestinal diseases including UC for thousands of years in China. Anemoside B4, the most abundant triterpenoid saponin isolated from P. chinensis, exerts anti-inflammatory and antioxidant effects and may be the most active compounds, which is responsible for the therapeutic effects. However, the mechanism how anemoside B4 executes its biological functions is still elusive. Methods Here, we used the 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rat model to evaluate the therapeutic effect of anemoside B4. Blood samples of colitis rats were collected for hematology analysis. The inflammation-associated factors were investigated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis was determined with EdU cell proliferation assay and TUNEL assay. The proteins regulated by anemoside B4 were identified by label-free quantitative proteomics. The significantly down-regulated proteins were verified by Western blotting analysis. mRNA expression was analyzed by quantitative real-time RT-PCR. Results The results showed that anemoside B4 ameliorated TNBS-induced colitis symptoms, including tissue damage, inflammatory cell infiltration, and pro-inflammatory cytokine production, apoptosis and slowed proliferation in colon. Quantitative proteomic analyses discovered that 56 proteins were significantly altered by anemoside B4 in the TNBS-induced rats. These proteins mainly clustered in tricarboxylic acid (TCA) cycle and respiratory electron transport chain. Among the altered proteins, S100A9 is one of the most significantly down-regulated proteins and associated with NF-κB and MAPK signaling pathways in the pathogenesis of UC. Further experiments revealed that anemoside B4 suppressed the expression of S100A9 and its downstream genes including TLR4 and NF-κB in colon. In vitro, anemoside B4 could inhibit the NF-κB signaling pathway induced by recombinant S100A9 protein in human intestinal epithelial Caco-2 cells. Moreover, anemoside B4 inhibits neutrophils recruitment and activation in colon induced by TNBS. Conclusions Our results demonstrate that anemoside B4 prevents TNBS-induced colitis by inhibiting the NF-κB signaling pathway through deactivating S100A9, suggesting that anemoside B4 is a promising therapeutic candidate for colitis.


2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


2020 ◽  
Author(s):  
Liucheng Xiao ◽  
Zonghuan Li ◽  
Chongyuan Fan ◽  
Chenggong Zhu ◽  
Xingyu Ma ◽  
...  

Abstract Background: Xiao-Xian-Xiong decoction is a useful formula in the treatment of atherosclerosis in traditional Chinese medicine. In this study, we aimed to investigate the function of Xiao-Xian-Xiong decoction in the treatment of atherosclerosis. Methods: In this study, we conducted the method of network pharmacology and molecular docking to discover the mechanism of Xiao-Xian-Xiong decoction against atherosclerosis. Then, we validated the function of Xiao-Xian-Xiong decoction in atherosclerosis in vitro. We investigated the function and mechanism of Xiao-Xian-Xiong decoction in RAW264.7 macrophage-derived foam cells.Results: We identified 213 targets of Xiao-Xian-Xiong decoction and 331 targets of atherosclerosis. The PPI networks of Xiao-Xian-Xiong decoction and atherosclerosis were constructed. Furthermore, the two PPI networks were merged and the core PPI network was obtained. Then, functional enrichment analysis was conducted with GO and KEGG signaling pathway analysis. KEGG analysis indicated Xiao-Xian-Xiong decoction was correlated with ubiquitin mediated proteolysis pathway, PI3K-AKT pathway, MAPK pathway, Notch signaling pathway, and TGF-β signaling pathway. At last, we validated the function of Xiao-Xian-Xiong decoction with atherosclerosis in vitro. Xiao-Xian-Xiong decoction reduced lipid accumulation and promoted the outflow of cholesterol in RAW264.7-derived foam cells. Xiao-Xian-Xiong decoction increased the expression of ABCA1 and ABCG1 protein in foam cells. ABCA1 and ABCG1 were related with regulation of the inflammatory pathway and cell proliferation in atherosclerosis.Conclusions: Combined the mechanism of available treatments of atherosclerosis, we inferred Xiao-Xian-Xiong decoction could alleviate atherosclerosis by inhibiting inflammatory response and cell proliferation.


2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2021 ◽  
Author(s):  
Shan Yang ◽  
Wei Gao ◽  
Haoqi Wang ◽  
Xi Zhang ◽  
Yunzhe Mi ◽  
...  

Abstract Background: Breast cancer (BC) is the most frequently diagnosed cancer in women and is the second most common cancer among newly diagnosed cancers worldwide. Studies have shown that paired box 2 (PAX2) participates in the tumorigenesis of some cancer cells. However, the functions of PAX2 in the BC context are still unclear.Methods: Transcriptome expression profiles and clinicopathological information of BC were download from the TCGA database. Then the expression level and prognostic value in TCGA database were explored. Gene Set Enrichment Analysis (GSEA) and functional enrichment analysis were performed to investigate the functions and pathways of PAX2. Moreover, RT-qPCR was used to determine the expression of PAX2 in BC tissues, and the predictive value of PAX2 in clinical samples was assessed. CCK-8 assay was used to evaluate cell growth. The migration and invasion capacities of cells were assessed by wound healing assay and Transwell assay.Results: PAX2 was up-regulated in the TCGA-BC datasets. GSEA analysis suggested that PAX2 might be involved in the regulation of MAPK signaling pathways and so on. Moreover, PAX2 was overexpressed in BC tissues, and PAX2 expression was associated with menopause. PAX2 deficiency could inhibit the growth, migration, and invasion of BC cells.Conclusion: This study suggested that PAX2 was up-regulated in BC, which inhibited BC cell growth, migration, and invasion. Thus, PAX2 could be a potential therapeutic target for BC.


Author(s):  
Shan Lei ◽  
Zhiwei He ◽  
Tengxiang Chen ◽  
Xingjun Guo ◽  
Zhirui Zeng ◽  
...  

Abstract Background Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. Methods In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. Results linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. Conclusion The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Qiang He ◽  
Hui Li ◽  
Fanzhi Meng ◽  
Xiangjun Sun ◽  
Xu Feng ◽  
...  

Methionine sulfoxide reductase B1 (MsrB1) is a member of the selenoprotein family, which contributes to the reduction of methionine sulfoxides produced from reactive oxygen species (ROS) by redox processes in energy pathways. However, few studies have examined the role of MsrB1 in human hepatocellular carcinoma (HCC). We observed that MsrB1 is highly expressed in HCC tissues and that its expression correlated with the prognoses of patients with HCC after hepatectomy. In vitro, knockdown of MsrB1 inhibits HCC cell growth by MTT and EdU proliferation assay, and MsrB1 interference enhances H2O2/trx-induced apoptosis. We observed that phosphorylation of the key proteins of the MAPK pathway, namely, ERK, MEK, and p53, was inhibited, but PARP and caspase 3 were increased, thus infecting mitochondrial integrity. In vivo, MsrB1 knockdown effectively inhibited tumor growth. Furthermore, MsrB1 knockdown reduced HCC cell migration and invasion in a transwell assay through inhibition of cytoskeletal rearrangement and spread. This change was linked to epithelial-mesenchymal transition (EMT) inhibition resulting from increases in E-cadherin expression and decreases in expression in TGF-β1, Slug, MMP-2/9, and so on. MsrB1 regulates HCC cell proliferation and migration by modulating the MAPK pathway and EMT. Thus, MsrB1 may be a novel therapeutic target with respect to the treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document