scholarly journals The Mechanism Study of Xiao-Xian-Xiong Decoction in the Treatment of Atherosclerosis with Network Pharmacology

2020 ◽  
Author(s):  
Liucheng Xiao ◽  
Zonghuan Li ◽  
Chongyuan Fan ◽  
Chenggong Zhu ◽  
Xingyu Ma ◽  
...  

Abstract Background: Xiao-Xian-Xiong decoction is a useful formula in the treatment of atherosclerosis in traditional Chinese medicine. In this study, we aimed to investigate the function of Xiao-Xian-Xiong decoction in the treatment of atherosclerosis. Methods: In this study, we conducted the method of network pharmacology and molecular docking to discover the mechanism of Xiao-Xian-Xiong decoction against atherosclerosis. Then, we validated the function of Xiao-Xian-Xiong decoction in atherosclerosis in vitro. We investigated the function and mechanism of Xiao-Xian-Xiong decoction in RAW264.7 macrophage-derived foam cells.Results: We identified 213 targets of Xiao-Xian-Xiong decoction and 331 targets of atherosclerosis. The PPI networks of Xiao-Xian-Xiong decoction and atherosclerosis were constructed. Furthermore, the two PPI networks were merged and the core PPI network was obtained. Then, functional enrichment analysis was conducted with GO and KEGG signaling pathway analysis. KEGG analysis indicated Xiao-Xian-Xiong decoction was correlated with ubiquitin mediated proteolysis pathway, PI3K-AKT pathway, MAPK pathway, Notch signaling pathway, and TGF-β signaling pathway. At last, we validated the function of Xiao-Xian-Xiong decoction with atherosclerosis in vitro. Xiao-Xian-Xiong decoction reduced lipid accumulation and promoted the outflow of cholesterol in RAW264.7-derived foam cells. Xiao-Xian-Xiong decoction increased the expression of ABCA1 and ABCG1 protein in foam cells. ABCA1 and ABCG1 were related with regulation of the inflammatory pathway and cell proliferation in atherosclerosis.Conclusions: Combined the mechanism of available treatments of atherosclerosis, we inferred Xiao-Xian-Xiong decoction could alleviate atherosclerosis by inhibiting inflammatory response and cell proliferation.

2020 ◽  
Vol 17 (5) ◽  
pp. 647-660 ◽  
Author(s):  
Shivananda Kandagalla ◽  
Sharath Belenahalli Shekarappa ◽  
Gollapalli Pavan ◽  
Umme Hani ◽  
Manjunatha Hanumanthappa

Background: Capsaicin is an active alkaloid /principal component of red pepper responsible for the pungency of chili pepper. Capsaicin by changing the intracellular redox homeostasis regulate a variety of signaling pathways ultimately producing a divergent cellular outcome. Several reports showed the potential of capsaicin against cancer metastasis, however unexplored molecular mechanism is still an active part of the research. Several growth factors have a critical role during cancer metastasis among them TGF- β signaling play a vital role. Methods: The present study aimed at analyzing capsaicin modulation of TGF-β signaling using network pharmacology approach. The chemical and protein interaction data of capsaicin was curated and abstracted using STITCH4.0, PubChem and ChEMBL database. Further, the compiled data set was subjected to the pathway and functional enrichment analysis using Protein Analysis THrough Evolutionary Relationship (PANTHER) and, Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Meanwhile, the pattern of amino acid composition across the capsaicin targets was analyzed using the EMBOSS Pepstat tool. Capsaicin targets involved in TGF- β were identified and their Protein-Protein Interaction (PPI) network constructed using STRING v10 and Cytoscape (v 3.2.1). From the above-constructed network, the clusters were mined using the MCODE clustering algorithm and finally binding affinity of capsaicin with its targets involved in TGF-β signaling pathway was analyzed using Autodock Vina. Results: The analysis explored capsaicin targets and, their associated functional and pathway annotations. Besides, the analysis also provides a detailed distinct pattern of amino acid composition across the capsaicin targets. The capsaicin targets described as MAPK14, JUN, SMAD3, MAPK3, MAPK1 and MYC involved in TGF-β signaling pathway through pathway enrichment analysis. The binding mode analysis of capsaicin with its targets has shown high affinity with MAPK3, MAPK1, JUN and MYC. Conclusion: The study explores the potential of capsaicin as a potent modulator of TGF-β signaling pathway during cancer metastasis and proposes new methodology and mechanism of action of capsaicin against TGF- β signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Gong ◽  
Xingren Chen ◽  
Tianshu Shi ◽  
Xiaoyan Shao ◽  
Xueying An ◽  
...  

As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug–disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug–disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.


Author(s):  
Shan Lei ◽  
Zhiwei He ◽  
Tengxiang Chen ◽  
Xingjun Guo ◽  
Zhirui Zeng ◽  
...  

Abstract Background Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. Methods In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. Results linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. Conclusion The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


2021 ◽  
Author(s):  
Jie-wen Zhao ◽  
Hai-dong Liu ◽  
Ming-yin Man ◽  
Lv-ya Wang ◽  
Ning Li ◽  
...  

Abstract Background Qishen Yiqi Pills (QSYQP) is a traditional Chinese compound recipe. However, our understanding of its mechanism has been hindered due to the complexity of its components and targets. In this work, the network pharmacology-based approaches were used to explore QSYQP’s pharmacological mechanism on treating cardiovascular diseases (CVD). Results From ETCM and TCM MESH databases we collected QSYQP’s 333 active components and their 674 putative targets. We constructed the sub-network influence by CVD genes and found that 40% QSYQP targets appeared in 20 modules, in which QSYQP’s targets and CVD genes co-existed as hub nodes in the sub-network. Functional enrichment analysis suggested that the 42 key targets were mainly expressed in platelets, blood vessels, cardiomyocytes, and other tissues. The main signaling pathways regulated and controlled by the key targets were inflammation, immunity, blood coagulation and energy metabolism. Network and pathway analysis identified 7 key targets, which were regulated by 7 compounds of QSYQP. 26 of the 42 important targets, including the 7 key targets were verified by literature mining. Twelve pairs of interactions between key targets and QSYQP’s compounds were validated by molecular docking. Further validation experiments suggested that QSYQP suppressed H/R induced apoptosis and cytoskeleton disruption of cardiomyocytes. Western blotting showed that the expression of cardiovascular diseases-related genes including ACTC1, FoxO1 and DIAPH1 was significantly decreased by establishing the hypoxia-reoxygenation model in vitro, while the protein expression of experimental group was significantly increased by adding QSYQP or its ingredients. Conclusion These results indicated the correlation of QSYQP treatment to the therapeutic effects of CVD. At the molecular level, this study revealed the multicomponent and multitargeting mechanisms of QSYQP in the regulation and treatment of cardiovascular diseases, potentially providing a reference for the further utilization of QSYQP.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wancai Que ◽  
Zhaoyang Wu ◽  
Maohua Chen ◽  
Binqing Zhang ◽  
Chuihuai You ◽  
...  

Gelsemium elegans (Gardner and Champ.) Benth. (Gelsemiaceae) (GEB) is a toxic plant indigenous to Southeast Asia especially China, and has long been used as Chinese folk medicine for the treatment of various types of pain, including neuropathic pain (NPP). Nevertheless, limited data are available on the understanding of the interactions between ingredients-targets-pathways. The present study integrated network pharmacology and experimental evidence to decipher molecular mechanisms of GEB against NPP. The candidate ingredients of GEB were collected from the published literature and online databases. Potentially active targets of GEB were predicted using the SwissTargetPrediction database. NPP-associated targets were retrieved from GeneCards, Therapeutic Target database, and DrugBank. Then the protein-protein interaction network was constructed. The DAVID database was applied to Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Molecular docking was employed to validate the interaction between ingredients and targets. Subsequently, a 50 ns molecular dynamics simulation was performed to analyze the conformational stability of the protein-ligand complex. Furthermore, the potential anti-NPP mechanisms of GEB were evaluated in the rat chronic constriction injury model. A total of 47 alkaloids and 52 core targets were successfully identified for GEB in the treatment of NPP. Functional enrichment analysis showed that GEB was mainly involved in phosphorylation reactions and nitric oxide synthesis processes. It also participated in 73 pathways in the pathogenesis of NPP, including the neuroactive ligand-receptor interaction signaling pathway, calcium signaling pathway, and MAPK signaling pathway. Interestingly, 11-Hydroxyrankinidin well matched the active pockets of crucial targets, such as EGFR, JAK1, and AKT1. The 11-hydroxyrankinidin-EGFR complex was stable throughout the entire molecular dynamics simulation. Besides, the expression of EGFR and JAK1 could be regulated by koumine to achieve the anti-NPP action. These findings revealed the complex network relationship of GEB in the “multi-ingredient, multi-target, multi-pathway” mode, and explained the synergistic regulatory effect of each complex ingredient of GEB based on the holistic view of traditional Chinese medicine. The present study would provide a scientific approach and strategy for further studies of GEB in the treatment of NPP in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Xuejiao Xie ◽  
Xingyu Ma ◽  
Siyu Zeng ◽  
Wansi Tang ◽  
Liucheng Xiao ◽  
...  

Atherosclerosis is a common metabolic disease characterized by lipid metabolic disorder. The processes of atherosclerosis include endothelial dysfunction, new endothelial layer formation, lipid sediment, foam cell formation, plaque formation, and plaque burst. Owing to the adverse effects of first-line medications, it is urgent to discover new medications to deal with atherosclerosis. Berberine is one of the most promising natural products derived from traditional Chinese medicine. However, the panoramic mechanism of berberine against atherosclerosis has not been discovered clearly. In this study, we used network pharmacology to investigate the interaction between berberine and atherosclerosis. We identified potential targets related to berberine and atherosclerosis from several databases. A total of 31 and 331 putative targets for berberine and atherosclerosis were identified, respectively. Then, we constructed berberine and atherosclerosis targets with PPI data. Berberine targets network with PPI data had 3204 nodes and 79437 edges. Atherosclerosis targets network with PPI data had 5451 nodes and 130891 edges. Furthermore, we merged the two PPI networks and obtained the core PPI network from the merged PPI network. The core PPI network had 132 nodes and 3339 edges. At last, we performed functional enrichment analyses including GO and KEGG pathway analysis in David database. GO analysis indicated that the biological processes were correlated with G1/S transition of mitotic cells cycle. KEGG pathway analysis found that the pathways directly associated with berberine against atherosclerosis were cell cycle, ubiquitin mediated proteolysis, MAPK signaling pathway, and PI3K-Akt signaling pathway. After combining the results in context with the available treatments for atherosclerosis, we considered that berberine inhibited inflammation and cell proliferation in the treatment of atherosclerosis. Our study provided a valid theoretical foundation for future research.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xinkui Liu ◽  
Jiarui Wu ◽  
Dan Zhang ◽  
Kaihuan Wang ◽  
Xiaojiao Duan ◽  
...  

Background.Hedyotis diffusaWilld. (HDW) is one of the renowned herbs often used in the treatment of gastric cancer (GC). However, its curative mechanism has not been fully elucidated.Objective. To systematically investigate the mechanisms of HDW in GC.Methods. A network pharmacology approach mainly comprising target prediction, network construction, and module analysis was adopted in this study.Results. A total of 353 targets of the 32 bioactive compounds in HDW were obtained. The network analysis showed that CA isoenzymes, p53, PIK3CA, CDK2,P27Kip1, cyclin D1, cyclin B1, cyclin A2, AKT1, BCL2, MAPK1, and VEGFA were identified as key targets of HDW in the treatment of GC. The functional enrichment analysis indicated that HDW probably produced the therapeutic effects against GC by synergistically regulating many biological pathways, such as nucleotide excision repair, apoptosis, cell cycle, PI3K/AKT/mTOR signaling pathway, VEGF signaling pathway, and Ras signaling pathway.Conclusions. This study holistically illuminates the fact that the pharmacological mechanisms of HDW in GC might be strongly associated with its synergic modulation of apoptosis, cell cycle, differentiation, proliferation, migration, invasion, and angiogenesis.


2021 ◽  
Author(s):  
Yongchang Guo ◽  
Dapeng Zhang ◽  
Yuju Cao ◽  
Xiaoyan Feng ◽  
Caihong Shen ◽  
...  

Abstract Ethnopharmacological relevanceOsteonecrosis of the femoral head (ONFH) is still a challenge for orthopedists worldwide, which may lead to disability in patients without effective treatment. A newly developed formula of Chinese medicine, Danyu Gukang Pills (DGP), was recognized to be effective for ONFH. Nevertheless, its molecular mechanisms remain to be clarified. MethodsNetwork pharmacology was adopted to detect the mechanism of DGP on ONFH. The compounds of DGP were collected from the online databases, and active components were selected based on their OB and DL index. The potential proteins of DGP were acquired from TCMSP database, while the potential genes of ONFH were obtained from Gene Cards and Pubmed Gene databases. The function of Gene and potential pathways were researched by GO and KEGG pathway enrichment analysis. The compounds-targets and targets-pathways network were constructed in an R and Cytosacpe software. The mechanism was further investigated via molecular docking. Finally, in-vitro experiments were validated in the BMSCs. ResultsA total of 2305 compounds in DGP were gained, among which, 370 were selected as active components for which conforming to criteria. Combined the network analysis, molecular docking and in-vitro experiments, the results firstly demonstrated that the treatment effect of DGP on ONFH may be closely related to HIF-1α, VEGFA and HIF-1 signaling pathway. ConclusionThe current study firstly researched the molecular mechanism of DGP on ONFH based on network pharmacology. The results indicated that DGP may exert the effect on ONFH targeting on HIF-1α and VEGFA via HIF-1 signaling pathway.


2021 ◽  
Author(s):  
Ruiping Yang ◽  
Xiaojing Lin ◽  
Chunhui Tao ◽  
Ruixue Jiang

Abstract BackgroundBuzhong Yiqi Decoction (BZYQD) has been widely accepted as an alternative treatment for gastric cancer (GC) in China. The present study set out to determine the potential molecular mechanism of BZYQD in the treatment of GC by means of network pharmacology, molecular docking, and molecular dynamics simulation.MethodsThe potential active ingredients and targets of BZYQD were screened out through the Traditional Chinese Medicine Systems Pharmacology (TCMSP). GC-related targets were screened out through the GeneCards database, and the intersection targets of BZYQD and GC were obtained by using the Venn diagram online tool. Then, the TCM-Active Ingredient-Target network was constructed by using the Cytoscape, and the protein-protein interaction (PPI) network was constructed by using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the effective targets of BZYQD in GC were performed through the Metascape platform. Finally, the molecular docking between the compounds and the target proteins was performed by using the AutoDock Vina software. The simulation of molecular dynamics was conducted for the optimal protein-ligand complex obtained by molecular docking using the Amber18 software.ResultsA total of 150 active ingredients of BZYQD were retrieved, corresponding to 136 targets of GC. The key active ingredients were quercetin, kaempferol, nobiletin, naringenin, and formononetin. The core targets were AKT1, STAT3, TP53, MAPK1, and MAPK3. GO functional enrichment analysis showed that BZYQD treated GC by affecting various biological processes such as oxidative stress, chemical stress, lipopolysaccharide reaction, and apoptosis. KEGG pathway enrichment analysis indicated that the apoptosis signaling pathway, PI3K/Akt signaling pathway, proteoglycan in cancer, IL-17 signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway were involved. Molecular docking results revealed the highest binding energy for MAPK3 and naringenin. The stable binding of MAPK3 and naringenin was also demonstrated in the molecular dynamics simulation test, with the binding free energy of -25kcal/mol.ConclusionThis study preliminarily revealed the multi-component, multi-target, and multi-pathway characteristics of BZYQD against GC, laying a scientific basis for further research on the molecular mechanism of BZYQD.


Sign in / Sign up

Export Citation Format

Share Document