scholarly journals rhKGF-2 Attenuates Smoke Inhalation Lung Injury of Rats via Activating PI3K/Akt/Nrf2 and Repressing FoxO1-NLRP3 Inflammasome

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhonghua Fu ◽  
Zhengying Jiang ◽  
Guanghua Guo ◽  
Xincheng Liao ◽  
Mingzhuo Liu ◽  
...  

Smoke inhalation injury is an acute pathological change caused by thermal stimulation or toxic substance absorption through respiratory epithelial cells. This study aims to probe the protective effect and mechanism of recombinant human keratinocyte growth factor 2 (rhKGF-2) against smoke inhalation-induced lung injury (SILI) in rats. The SILI was induced in rats using a smoke exposure model, which were then treated with rhKGF-2. The rat blood was collected for blood-gas analysis, and the levels of inflammatory factors and oxidative stress markers in the plasma were measured. The rat lung tissues were collected. The pathological changes and cell apoptosis were determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP nick end labeling (TUNEL) assay, and the PI3K/Akt/Nrf2/HO-1/NQO1, and FoxO1-NLRP3 inflammasome expression were verified by western blot (WB). Both of the human alveolar epithelial cell (HPAEpiC) and primary rat alveolar epithelial cell were exposed to lipopolysaccharide (LPS) for making in-vitro alveolar epithelial cell injury model. After treatment with rhKGF-2, GSK2126458 (PI3K inhibitor) and AS1842856 (FoxO1 inhibitor), the cell viability, apoptosis, inflammation, oxidative stress, reactive oxygen species (ROS), PI3K/Akt/Nrf2, HO-1/NQO1, and FoxO1-NLRP3 in HPAEpiC and primary rat alveolar epithelial cell were examined. The data suggested that rhKGF-2 reduced LPS-induced HPAEpiC cell and primary rat alveolar epithelial cell apoptosis and the expression of inflammatory factors and oxidative stress factors. Moreover, rhKGF-2 improved the blood gas and alleviated SILI-induced lung histopathological injury in vivo via repressing inflammation, NLRP3 inflammasome activation and oxidative stress. Mechanistically, rhKGF-2 activated PI3K/Akt pathway, enhanced Nrf2/HO-1/NQO1 expression, and attenuated FoxO1-NLRP3 inflammasome both in vitro and in vivo. However, pharmaceutical inhibition of PI3K/Akt pathway attenuated rhKGF-2-mediated protective effects against SILI, while suppressing FoxO1 promoted rhKGF-2-mediated protective effects. Taken together, this study demonstrated that rhKGF-2 mitigated SILI by regulating the PI3K/Akt/Nrf2 pathway and the FoxO1-NLRP3 axis, which provides new reference in treating SILI.

2016 ◽  
Vol 64 (4) ◽  
pp. 961.1-961
Author(s):  
S Kim ◽  
P Cheresh ◽  
RP Jablonski ◽  
DW Kamp ◽  
M Eren ◽  
...  

RationaleConvincing evidence has emerged that impaired alveolar epithelial cell (AEC) injury and repair resulting from ‘exaggerated’ lung aging and mitochondrial dysfunction are critical determinants of the lung fibrogenic potential of toxic agents, including asbestos fibers, but the mechanisms underlying these findings is unknown. We showed that the extent of AEC mitochondrial DNA (mtDNA) damage and apoptosis are critical determinants of asbestos-induced pulmonary fibrosis (Cheresh et al AJRCMB 2014, Kim et al JBC 2014). Klotho is an age-inhibiting gene and Klotho-deficient mice demonstrate a premature aging phenotype that includes a reduced lifespan, arteriosclerosis, and lung oxidative DNA damage, and that Klotho attenuates hyperoxic-induced AEC DNA damage and apoptosis (Ravikumar et al AJP-Lung 2014). We reason that Klotho has an important role in limiting pulmonary fibrosis by protecting the AECs from oxidative stress.MethodsQuantitative PCR-based measurement of mtDNA damage was assessed following transient transfection with wild-type Klotho, Klotho siRNA or AKT siRNA in A549 and/or MLE-12 cells for 48 hrs followed by exposure to either amosite asbestos (25 µg/cm2) or H2O2 (200 µM) for 24 hrs. Apoptosis was assessed by cleaved caspase-9/3 levels and DNA fragmentation assay. Murine pulmonary fibrosis was analyzed in male 8–10 week old WT (C3H/C57B6J) mice or Klotho heterozygous knockout (Kl+/−) mice following intratracheal instillation of a single dose of 100 µg crocidolite asbestos or titanium dioxide (negative control) using histology (fibrosis score by Masson's trichrome staining) and lung collagen (Sircoll assay).ResultsCompared to control, amosite asbestos or H2O2 reduces Klotho mRNA/protein expression. Notably, silencing of Klotho promotes oxidative stress-induced AEC mtDNA damage and apoptosis whereas Klotho-enforced expression (EE) and Euk-134, a mitochondrial ROS scavenger, are protective. Interestingly, Kl+/− mice have increased asbestos-induced lung fibrosis. Also, we find that inhibition or silencing of AKT augments oxidant-induced AEC mtDNA damage and apoptosis.ConclusionsOur data demonstrate a crucial role for AEC AKT signaling in mediating the mtDNA damage protective effects of Klotho. Given the importance of AEC aging and apoptosis in pulmonary fibrosis, we reason that Klotho/AKT axis is an innovative therapeutic target for preventing common lung diseases of aging (i.e. IPF, COPD, lung cancer, etc.) for which more effective management regimens are clearly needed.FundingNIH-RO1 ES020357-01A1 (DK) and VA Merit (DK).


1994 ◽  
Vol 267 (6) ◽  
pp. L728-L738 ◽  
Author(s):  
F. Kheradmand ◽  
H. G. Folkesson ◽  
L. Shum ◽  
R. Derynk ◽  
R. Pytela ◽  
...  

Alveolar epithelial type II cells are essential for regenerating an intact alveolar barrier after destruction of type I cells in vivo. The first objective of these experimental studies was to develop an in vitro model to quantify alveolar epithelial cell wound repair. The second objective was to investigate mechanisms of alveolar epithelial cell wound healing by studying the effects of serum and transforming growth factor-alpha (TGF-alpha) on wound closure. Primary cultures of rat alveolar type II cells were prepared by standard methods and grown to form confluent monolayers in 48 h. Then a wound was made by denuding an area (mean initial area of 2.1 +/- 0.6 mm2) of the monolayer. Re-epithelialization of the denuded area over time in the presence or absence of serum was measured using quantitative measurements from time-lapse video microscopy. The half time of wound healing was significantly enhanced in the presence of serum compared with serum-free conditions (2.4 +/- 0.2 vs. 17.4 +/- 0.8 h, P < 0.001). We then tested the hypothesis that TGF-alpha is an important growth factor for stimulating wound repair of alveolar epithelial cells. Exogenous addition of TGF-alpha in serum-free medium resulted in a significantly more rapid wound closure, and, furthermore, the addition of a monoclonal antibody to TGF-alpha in the presence of serum significantly decreased fourfold the rate of wound closure. Measurement of internuclear cell distance confirmed that both cell motility and cell spreading were responsible for closure of the wound. These data demonstrate that 1) the mechanisms of alveolar cell repair can be studied in vitro and that 2) TGF-alpha is a potent growth factor that enhances in vitro alveolar epithelial cell wound closure.


2005 ◽  
Vol 31 (5) ◽  
pp. 461-482 ◽  
Author(s):  
Colin E. Olsen ◽  
Brant E. Isakson ◽  
Gregory J. Seedorf ◽  
Richard L. Lubman ◽  
Scott Boitano

2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257281
Author(s):  
Silvia Speca ◽  
Caroline Dubuquoy ◽  
Christel Rousseaux ◽  
Philippe Chavatte ◽  
Pierre Desreumaux ◽  
...  

The development of more effective, better tolerated drug treatments for progressive pulmonary fibrosis (of which idiopathic pulmonary fibrosis is the most common and severe form) is a research priority. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a key regulator of inflammation and fibrosis and therefore represents a potential therapeutic target. However, the use of synthetic PPAR-γ agonists may be limited by their potentially severe adverse effects. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, we have demonstrated that the non-racemic selective PPAR-γ modulator GED-0507 is able to reduce body weight loss, ameliorate clinical and histological features of pulmonary fibrosis, and increase survival rate without any safety concerns. Here, we focused on the biomolecular effects of GED-0507 on various inflammatory/fibrotic pathways. We demonstrated that preventive and therapeutic administration of GED-0507 reduced the BLM-induced mRNA expression of several markers of fibrosis, including transforming growth factor (TGF)-β, alpha-smooth muscle actin, collagen and fibronectin as well as epithelial-to-mesenchymal transition (EMT) and expression of mucin 5B. The beneficial effect of GED-0507 on pulmonary fibrosis was confirmed in vitro by its ability to control TGFβ-induced myofibroblast activation in the A549 human alveolar epithelial cell line, the MRC-5 lung fibroblast line, and primary human lung fibroblasts. Compared with the US Food and Drug Administration-approved antifibrotic drugs pirfenidone and nintedanib, GED-0507 displayed greater antifibrotic activity by controlling alveolar epithelial cell dysfunction, EMT, and extracellular matrix remodeling. In conclusion, GED-0507 demonstrated potent antifibrotic properties and might be a promising drug candidate for the treatment of pulmonary fibrosis.


1999 ◽  
Vol 112 (2) ◽  
pp. 243-252
Author(s):  
E. Planus ◽  
S. Galiacy ◽  
M. Matthay ◽  
V. Laurent ◽  
J. Gavrilovic ◽  
...  

Type II pneumocytes are essential for repair of the injured alveolar epithelium. The effect of two MMP collagenases, MMP-1 and MMP-13 on alveolar epithelial repair was studied in vitro. The A549 alveolar epithelial cell line and primary rat alveolar epithelial cell cultures were used. Cell adhesion and cell migration were measured with and without exogenous MMP-1. Wound healing of a cell monolayer of rat alveolar epithelial cell after a mechanical injury was evaluated by time lapse video analysis. Cell adhesion on type I collagen, as well as cytoskeleton stiffness, was decreased in the presence of exogenous collagenases. A similar decrease was observed when cell adhesion was tested on collagen that was first incubated with MMP-1 (versus control on intact collagen). Cell migration on type I collagen was promoted by collagenases. Wound healing of an alveolar epithelial cell monolayer was enhanced in the presence of exogenous collagenases. Our results suggest that collagenases could modulate the repair process by decreasing cell adhesion and cell stiffness, and by increasing cell migration on type I collagen. Collagen degradation could modify cell adhesion sites and collagen degradation peptides could induce alveolar type II pneumocyte migration. New insights regarding alveolar epithelial cell migration are particularly relevant to investigate early events during alveolar epithelial repair following lung injury.


1997 ◽  
Vol 272 (6) ◽  
pp. L1031-L1045 ◽  
Author(s):  
B. D. Uhal

The type II alveolar epithelial cell has important metabolic and biosynthetic functions but also serves as the stem cell of the alveolar epithelium. Much of the evidence underlying this premise was obtained before 1980 and provided the basis for a working model that has not been reconsidered for more than fifteen years. With the exceptions to be discussed below, little evidence has accumulated in the interim to suggest that the model requires significant alteration. Important questions remain unanswered, however, and some components of the model need to be supplemented, particularly in light of recent investigations that have provided insights not possible in earlier work. In particular, in vitro studies have suggested that the relationship between the parent type II cell and its progeny may not be as straightforward as originally thought. In addition, the rate of epithelial cell loss was recognized long ago to be an important factor in the regulation of this system, but its kinetics and mechanisms have received little attention. These and other unresolved issues are critical to our understanding of the homeostasis of the alveolar epithelium under normal and pathological conditions.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yan ◽  
Si-Chi Xu ◽  
Chun-Yan Kong ◽  
Xiao-Yang Zhou ◽  
Zhou-Yan Bian ◽  
...  

Background. Oxidative stress, inflammation and cardiac apoptosis were closely involved in doxorubicin (DOX)-induced cardiac injury. Piperine has been reported to suppress inflammatory response and pyroptosis in macrophages. However, whether piperine could protect the mice against DOX-related cardiac injury remain unclear. This study aimed to investigate whether piperine inhibited DOX-related cardiac injury in mice. Methods. To induce DOX-related acute cardiac injury, mice in DOX group were intraperitoneally injected with a single dose of DOX (15 mg/kg). To investigate the protective effects of piperine, mice were orally treated for 3 weeks with piperine (50 mg/kg, 18:00 every day) beginning two weeks before DOX injection. Results. Piperine treatment significantly alleviated DOX-induced cardiac injury, and improved cardiac function. Piperine also reduced myocardial oxidative stress, inflammation and apoptosis in mice with DOX injection. Piperine also improved cell viability, and reduced oxidative damage and inflammatory factors in cardiomyocytes. We also found that piperine activated peroxisome proliferator-activated receptor-γ (PPAR-γ), and the protective effects of piperine were abolished by the treatment of the PPAR-γ antagonist in vivo and in vitro. Conclusions. Piperine could suppress DOX-related cardiac injury via activation of PPAR-γ in mice.


2003 ◽  
Vol 71 (10) ◽  
pp. 5970-5978 ◽  
Author(s):  
James M. Beck ◽  
Angela M. Preston ◽  
Steven E. Wilcoxen ◽  
Susan B. Morris ◽  
Eric S. White ◽  
...  

ABSTRACT Patients with Pneumocystis pneumonia often develop respiratory failure after entry into medical care, and one mechanism for this deterioration may be increased alveolar epithelial cell injury. In vitro, we previously demonstrated that Pneumocystis is not cytotoxic for alveolar epithelial cells. In vivo, however, infection with Pneumocystis could increase susceptibility to injury by stressors that, alone, would be sublethal. We examined transient exposure to hyperoxia as a prototypical stress that does cause mortality in normal mice. Mice were depleted of CD4+ T cells and inoculated intratracheally with Pneumocystis. Control mice were depleted of CD4+ T cells but did not receive Pneumocystis. After 4 weeks, mice were maintained in normoxia, were exposed to hyperoxia for 4 days, or were exposed to hyperoxia for 4 days followed by return to normoxia. CD4-depleted mice with Pneumocystis pneumonia demonstrated significant mortality after transient exposure to hyperoxia, while all uninfected control mice survived this stress. We determined that organism burdens were not different. However, infected mice exposed to hyperoxia and then returned to normoxia demonstrated significant increases in inflammatory cell accumulation and lung cell apoptosis. We conclude that Pneumocystis pneumonia leads to increased mortality following a normally sublethal hyperoxic insult, accompanied by alveolar epithelial cell injury and increased pulmonary inflammation.


Sign in / Sign up

Export Citation Format

Share Document