scholarly journals Review on Biological Characteristics of Kv1.3 and Its Role in Liver Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Junda Liu ◽  
Xiong-Wen Lv ◽  
Lei Zhang ◽  
Hua Wang ◽  
Jun Li ◽  
...  

The liver accounts for the largest proportion of macrophages in all solid organs of the human body. Liver macrophages are mainly composed of cytolytic cells inherent in the liver and mononuclear macrophages recruited from the blood. Monocytes recruitment occurs mainly in the context of liver injury and inflammation and can be recruited into the liver and achieve a KC-like phenotype. During the immune response of the liver, macrophages/KC cells release inflammatory cytokines and infiltrate into the liver, which are considered to be the common mechanism of various liver diseases in the early stage. Meanwhile, macrophages/KC cells form an interaction network with other liver cells, which can affect the occurrence and progression of liver diseases. From the perspective of liver disease treatment, knowing the full spectrum of macrophage activation, the underlying molecular mechanisms, and their implication in either promoting liver disease progression or repairing injured liver tissue is highly relevant from a therapeutic point of view. Kv1.3 is a subtype of the voltage-dependent potassium channel, whose function is closely related to the regulation of immune cell function. At present, there are few studies on the relationship between Kv1.3 and liver diseases, and the application of its blockers as a potential treatment for liver diseases has not been reported. This manuscript reviewed the physiological characteristics of Kv1.3, the relationship between Kv1.3 and cell proliferation and apoptosis, and the role of Kv1.3 in a variety of liver diseases, so as to provide new ideas and strategies for the prevention and treatment of liver diseases. In short, by understanding the role of Kv1.3 in regulating the functions of immune cells such as macrophages, selective blockers of Kv1.3 or compounds with similar functions can be applied to alleviate the progression of liver diseases and provide new ideas for the prevention and treatment of liver diseases.

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 182
Author(s):  
Annalisa Cespiati ◽  
Marica Meroni ◽  
Rosa Lombardi ◽  
Giovanna Oberti ◽  
Paola Dongiovanni ◽  
...  

Sarcopenia is defined as a loss of muscle strength, mass and function and it is a predictor of mortality. Sarcopenia is not only a geriatric disease, but it is related to several chronic conditions, including liver diseases in both its early and advanced stages. Despite the increasing number of studies exploring the role of sarcopenia in the early stages of chronic liver disease (CLD), its prevalence and the relationship between these two clinical entities are still controversial. Myosteatosis is characterized by fat accumulation in the muscles and it is related to advanced liver disease, although its role in the early stages is still under researched. Therefore, in this narrative review, we firstly aimed to evaluate the prevalence and the pathogenetic mechanisms underlying sarcopenia and myosteatosis in the early stage of CLD across different aetiologies (mainly non-alcoholic fatty liver disease, alcohol-related liver disease and viral hepatitis). Secondly, due to the increasing prevalence of sarcopenia worldwide, we aimed to revise the current and the future therapeutic approaches for the management of sarcopenia in CLD.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Pan Luo ◽  
Fuqiang Gao ◽  
Dongsheng Niu ◽  
Xichun Sun ◽  
Qiang Song ◽  
...  

Chondrocytes are the sole cellular constituents of normal cartilage. The degeneration and apoptosis of these cells are considered the main cause of osteoarthritis (OA). Previous studies have suggested that the enhancement of autophagy in chondrocytes can delay the progression of osteoarthritis by affecting intracellular metabolic activity, i.e., by regulating the metabolism of nutrients, which can delay cell aging and death. In this review, we explored the relationship between autophagy and chondrocyte metabolism and provided new ideas for the prevention and treatment of OA.


2019 ◽  
Vol 20 (3) ◽  
pp. 197-214 ◽  
Author(s):  
Isabel Sánchez-Crisóstomo ◽  
Eduardo Fernández-Martínez ◽  
Raquel Cariño-Cortés ◽  
Gabriel Betanzos-Cabrera ◽  
Rosa A. Bobadilla-Lugo

Background: Liver ailments are among the leading causes of death; they originate from viral infections, chronic alcoholism, and autoimmune illnesses, which may chronically be precursors of cirrhosis; furthermore, metabolic syndrome may worsen those hepatopathies or cause Non-alcoholic Fatty Liver Disease (NAFLD) that may advance to non-alcoholic steatohepatitis (NASH). Cirrhosis is the late-stage liver disease and can proceed to hepatocellular carcinoma (HCC). Pharmacological treatment options for liver diseases, cirrhosis, and HCC, are limited, expensive, and not wholly effective. The use of medicinal herbs and functional foods is growing around the world as natural resources of bioactive compounds that would set the basis for the development of new drugs. Review and Conclusion: Plant and food-derived sterols and triterpenoids (TTP) possess antioxidant, metabolic-regulating, immunomodulatory, and anti-inflammatory activities, as well as they are recognized as anticancer agents, suggesting their application strongly as an alternative therapy in some chronic diseases. Thus, it is interesting to review current reports about them as hepatoprotective agents, but also because they structurally resemble cholesterol, sexual hormones, corticosteroids and bile acids due to the presence of the steroid nucleus, so they all can share pharmacological properties through activating nuclear and membrane receptors. Therefore, sterols and TTP appear as a feasible option for the prevention and treatment of chronic metabolic-related liver diseases, cirrhosis, and HCC.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1346
Author(s):  
Priya Veluswamy ◽  
Max Wacker ◽  
Dimitrios Stavridis ◽  
Thomas Reichel ◽  
Hendrik Schmidt ◽  
...  

The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.


2020 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
Na Young Lee ◽  
Ki Tae Suk

Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition to viral hepatitis, diseases such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own and exacerbate chronic liver disease of other causes. The treatment of cirrhosis can be divided into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics. Moreover, it provides evidence of a relationship between the gut microbiome and liver fibrosis.


2011 ◽  
Vol 152 (49) ◽  
pp. 1955-1961 ◽  
Author(s):  
Klára Werling

Autophagy is a self-digestion process that plays an important role in the development, differentiation and homeostasis of cells, helping their survival during starvation and hypoxia. Accumulated mutant proteins in the endoplasmic reticulum can be degraded by autophagy in alpha-1 antitrypsin deficiency. Hepatitis C and B virus may exploit the autophagy pathway to escape the innate immune response and to promote their own replication. Autophagy is decreased in response to chronic alcohol consumption, likely due to a decrease in 5’-adenosine monophosphate-activated protein kinase, increase in mTOR activity and due to an alteration in vesicle transport in hepatocytes. In obesity and alcoholic liver disease the decreased function of autophagy causes formation of Mallory-Denk bodies and cell death. The deficient autophagy can contribute to liver steatosis, to endoplasmic reticulum stress, and to progression of liver disease. Autophagy defect in hepatocellular carcinoma suggests that it can serve a tumor-suppressor function. The autophagy protein Beclin-1 levels have prognostic significance in liver tumors. Understanding of the molecular mechanism and the role of autophagy may lead to more effective therapeutic strategies in liver diseases in the future. Orv. Hetil., 2011, 152, 1955–1961.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingyao Cai ◽  
Min Hu ◽  
Zhiyang Chen ◽  
Zeng Ling

AbstractLiver fibrosis occurs in response to any etiology of chronic liver injury. Lack of appropriate clinical intervention will lead to liver cirrhosis or hepatocellular carcinoma (HCC), seriously affecting the quality of life of patients, but the current clinical treatments of liver fibrosis have not been developed yet. Recent studies have shown that hypoxia is a key factor promoting the progression of liver fibrosis. Hypoxia can cause liver fibrosis. Liver fibrosis can, in turn, profoundly further deepen the degree of hypoxia. Therefore, exploring the role of hypoxia in liver fibrosis will help to further understand the process of liver fibrosis, and provide the theoretical basis for its diagnosis and treatment, which is of great significance to avoid further deterioration of liver diseases and protect the life and health of patients. This review highlights the recent advances in cellular and molecular mechanisms of hypoxia in developments of liver fibrosis.


2011 ◽  
Vol 208 (6) ◽  
pp. 1189-1201 ◽  
Author(s):  
Mark P. Boldin ◽  
Konstantin D. Taganov ◽  
Dinesh S. Rao ◽  
Lili Yang ◽  
Jimmy L. Zhao ◽  
...  

Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ∼22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation.


2021 ◽  
Vol 27 ◽  
Author(s):  
Li-Ping Yu ◽  
Ting-Ting Shi ◽  
Yan-Qin Li ◽  
Jian-Kang Mu ◽  
Ya-Qin Yang ◽  
...  

: Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.


Sign in / Sign up

Export Citation Format

Share Document