scholarly journals Untargeted and Targeted Metabolomics Reveal the Underlying Mechanism of Aspirin Eugenol Ester Ameliorating Rat Hyperlipidemia via Inhibiting FXR to Induce CYP7A1

2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Xiao-Rong ◽  
Ma Ning ◽  
Liu Xi-Wang ◽  
Li Shi-Hong ◽  
Qin Zhe ◽  
...  

Hyperlipidemia is an important lipid disorder and a risk factor for health. Aspirin eugenol ester (AEE) is a novel synthetic compound which is made up of two chemical structural units from aspirin and eugenol. Therapeutic effect of AEE on hyperlipidemia has been confirmed in animal model. But the action mechanism of AEE on hyperlipidemia is still poorly understood. In this study, we investigated the effects of AEE on liver and feces metabolic profile through UPLC-Q-TOF/MS-based untargeted metabolomics in hyperlipidemia hamster induced with high fat diet (HFD), and the effects of AEE on the expression of genes and proteins related to cholesterol and bile acid (BA) in HFD-induced hyperlipidemia SD rat. The concentrations of 26 bile acids (BAs) in the liver from hyperlipidemia SD rat were also quantified with the application of BA targeted metabolomics. The results of untargeted metabolomics showed that the underlying mechanism of AEE on hyperlipidemia was mainly associated with amino acid metabolism, glutathione metabolism, energy metabolism, BA metabolism, and glycerophospholipid metabolism. AEE induced the expression of the BA-synthetic enzymes cholesterol 7α-hydroxylase (CYP7A1) by the inhibition of BA nuclear receptor farnesoid X receptor (FXR) in liver, which resulted in accelerating the conversion of cholesterol into bile acids and excrete in feces. The results of BA targeted metabolomics showed that AEE elevated the glycine-conjugated BA level and decreased the tauro-conjugated BA level. In conclusion, this study found that AEE decreased FXR and increased CYP7A1 in the liver, which might be the possible molecular mechanisms and targets of AEE for anti-hyperlipidemia therapies.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 705 ◽  
Author(s):  
Martin Wagner ◽  
Michael Trauner

Cholestatic liver diseases are hereditary or acquired disorders with impaired hepatic excretion and enterohepatic circulation of bile acids and other cholephiles. The distinct pathological mechanisms, particularly for the acquired forms of cholestasis, are not fully revealed, but advances in the understanding of the molecular mechanisms and identification of key regulatory mechanisms of the enterohepatic circulation of bile acids have unraveled common and central mechanisms, which can be pharmacologically targeted. This overview focuses on the central roles of farnesoid X receptor, fibroblast growth factor 19, and apical sodium-dependent bile acid transporter for the enterohepatic circulation of bile acids and their potential as new drug targets for the treatment of cholestatic liver disease.


2017 ◽  
Vol 35 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Dieter Häussinger ◽  
Claus Kordes

Ursodeoxycholate and its taurine conjugate tauroursodeoxycholate (TUDC) promote choleresis by triggering the insertion of transport proteins for bile acids into the canalicular and basolateral membranes of hepatocytes. In addition, TUDC exerts hepatoprotective and anti-apoptotic effects, can counteract the action of toxic bile acids and reduce endoplasmic reticulum stress. TUDC can also initiate the differentiation of multipotent mesenchymal stem cells (MSC) including hepatic stellate cells and promote their development into hepatocyte-like cells. Although the hepatoprotective and choleretic action of TUDC is empirically used in clinical medicine since decades, the underlying molecular mechanisms remained largely unclear. Since TUDC has little or no potency to activate known bile acid receptors, such as farnesoid X receptor and transmembrane G protein-coupled bile acid receptor, other receptors must be involved in TUDC-mediated signaling. Recent research demonstrates that integrins serve as sensors for TUDC. After binding of TUDC to α5β1-integrin, the β1-integrin subunit becomes activated through a conformational change, thereby triggering integrin signaling with the downstream activation of focal adhesion kinase, c-Src, the epidermal growth factor receptor and activation of the mitogen-activated protein kinases, Erks and p38. These events trigger choleresis through a coordinated insertion of the sodium-taurocholate cotransporting polypeptide into the basolateral membrane and of the bile salt export pump into the canalicular membrane. In addition to its choleretic action, TUDC-induced integrin activation triggers a cyclic adenosine monophosphate-dependent protein kinase A activation in hepatocytes, which provides the basis for the anti-apoptotic effect of TUDC. On the other hand, the TUDC-induced stimulation of MSC differentiation appears not to be mediated by integrins. This article gives a brief overview about our work on the signaling network-mediating hepatoprotection by TUDC.


2013 ◽  
Vol 304 (4) ◽  
pp. G371-G380 ◽  
Author(s):  
Matthew J. Potthoff ◽  
Austin Potts ◽  
Tianteng He ◽  
João A. G. Duarte ◽  
Ronald Taussig ◽  
...  

Bile acid sequestrants are nonabsorbable resins designed to treat hypercholesterolemia by preventing ileal uptake of bile acids, thus increasing catabolism of cholesterol into bile acids. However, sequestrants also improve hyperglycemia and hyperinsulinemia through less characterized metabolic and molecular mechanisms. Here, we demonstrate that the bile acid sequestrant, colesevelam, significantly reduced hepatic glucose production by suppressing hepatic glycogenolysis in diet-induced obese mice and that this was partially mediated by activation of the G protein-coupled bile acid receptor TGR5 and glucagon-like peptide-1 (GLP-1) release. A GLP-1 receptor antagonist blocked suppression of hepatic glycogenolysis and blunted but did not eliminate the effect of colesevelam on glycemia. The ability of colesevelam to induce GLP-1, lower glycemia, and spare hepatic glycogen content was compromised in mice lacking TGR5. In vitro assays revealed that bile acid activation of TGR5 initiates a prolonged cAMP signaling cascade and that this signaling was maintained even when the bile acid was complexed to colesevelam. Intestinal TGR5 was most abundantly expressed in the colon, and rectal administration of a colesevelam/bile acid complex was sufficient to induce portal GLP-1 concentration but did not activate the nuclear bile acid receptor farnesoid X receptor (FXR). The beneficial effects of colesevelam on cholesterol metabolism were mediated by FXR and were independent of TGR5/GLP-1. We conclude that colesevelam administration functions through a dual mechanism, which includes TGR5/GLP-1-dependent suppression of hepatic glycogenolysis and FXR-dependent cholesterol reduction.


2020 ◽  
Vol 16 (1) ◽  
pp. 85-89
Author(s):  
Mahesh M. Gouda ◽  
Ashwini Prabhu ◽  
Varsha Reddy S.V. ◽  
Rafa Jahan ◽  
Yashodhar P. Bhandary

Background: Bleomycin (BLM) is known to cause DNA damage in the Alveolar Epithelial Cells (AECs). It is reported that BLM is involved in the up-regulation of inflammatory molecules such as neutrophils, macrophages, chemokines and cytokines. The complex underlying mechanism for inflammation mediated progression of lung injury is still unclear. This investigation was designed to understand the molecular mechanisms associated with p53 mediated modulation of Plasminogen Activator Inhibitor-I (PAI-I) expression and its regulation by nano-curcumin formulation. Methods: A549 cells were treated with BLM to cause the cellular damage in vitro and commercially available nano-curcumin formulation was used as an intervention. Cytotoxic effect of nano-curcumin was analyzed using Methyl Thiazolyl Tetrazolium (MTT) assay. Protein expressions were analyzed using western blot to evaluate the p53 mediated changes in PAI-I expression. Results: Nano-curcumin showed cytotoxicity up to 88.5 % at a concentration of 20 μg/ml after 48 h of treatment. BLM exposure to the cells activated the phosphorylation of p53, which in turn increased PAII expression. Nano-curcumin treatment showed a protective role against phosphorylation of p53 and PAI-I expression, which in turn regulated the fibro-proliferative phase of injury induced by bleomycin. Conclusion: Nano-curcumin could be used as an effective intervention to regulate the severity of lung injury, apoptosis of AECs and fibro-proliferation during pulmonary injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lori W. E. van der Schoor ◽  
Henkjan J. Verkade ◽  
Anna Bertolini ◽  
Sanne de Wit ◽  
Elvira Mennillo ◽  
...  

AbstractNeonatal hyperbilirubinemia or jaundice is associated with kernicterus, resulting in permanent neurological damage or even death. Conventional phototherapy does not prevent hyperbilirubinemia or eliminate the need for exchange transfusion. Here we investigated the potential of therapeutic bile acids ursodeoxycholic acid (UDCA) and obeticholic acid (OCA, 6-α-ethyl-CDCA), a farnesoid-X-receptor (FXR) agonist, as preventive treatment options for neonatal hyperbilirubinemia using the hUGT1*1 humanized mice and Ugt1a-deficient Gunn rats. Treatment of hUGT1*1 mice with UDCA or OCA at postnatal days 10–14 effectively decreased bilirubin in plasma (by 82% and 62%) and brain (by 72% and 69%), respectively. Mechanistically, our findings indicate that these effects are mediated through induction of protein levels of hUGT1A1 in the intestine, but not in liver. We further demonstrate that in Ugt1a-deficient Gunn rats, UDCA but not OCA significantly decreases plasma bilirubin, indicating that at least some of the hypobilirubinemic effects of UDCA are independent of UGT1A1. Finally, using the synthetic, non-bile acid, FXR-agonist GW4064, we show that some of these effects are mediated through direct or indirect activation of FXR. Together, our study shows that therapeutic bile acids UDCA and OCA effectively reduce both plasma and brain bilirubin, highlighting their potential in the treatment of neonatal hyperbilirubinemia.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 459
Author(s):  
Hyerin Park ◽  
Eunok Lee ◽  
Yunsoo Kim ◽  
Hye Yoon Jung ◽  
Kwang-Min Kim ◽  
...  

Chronic excessive alcohol consumption is associated with multiple liver defects, such as steatosis and cirrhosis, mainly attributable to excessive reactive oxygen species (ROS) production. Barley sprouts (Hordeum vulgare L.) contain high levels of polyphenols that may serve as potential antioxidants. This study aimed to investigate whether barley sprouts extract powder (BSE) relieves alcohol-induced oxidative stress and related hepatic damages in habitual alcohol drinkers with fatty liver. In a 12-week randomized controlled trial with two arms (placebo or 480 mg/day BSE; n = 76), we measured clinical markers and metabolites at the baseline and endpoint to understand the complex molecular mechanisms. BSE supplementation reduced the magnitude of ROS generation and lipid peroxidation and improved the glutathione antioxidant system. Subsequent metabolomic analysis identified alterations in glutathione metabolism, amino acid metabolism, and fatty acid synthesis pathways, confirming the role of BSE in glutathione-related lipid metabolism. Finally, the unsupervised machine learning algorithm indicated that subjects with lower glutathione reductase at the baseline were responders for liver fat content, and those with higher fatigue and lipid oxidation were responders for γ-glutamyl transferase. These findings suggest that BSE administration may protect against hepatic injury by reducing oxidative stress and changing the metabolism in habitual alcohol drinkers with fatty liver.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chu-nan Zhang ◽  
Lin-yi Zhou ◽  
Shu-jiao Qian ◽  
Ying-xin Gu ◽  
Jun-yu Shi ◽  
...  

Abstract Objectives This study aims to evaluate the ability of tantalum-coated titanium to improve human gingival fibroblasts’ adhesion, viability, proliferation, migration performance, and the potential molecular mechanisms. Materials and methods Titanium plates were divided into two groups: (1) no coating (Ti, control), (2) Tantalum-coated titanium (Ta-coated Ti). All samples were characterized by scanning electronic microscopy, surface roughness, and hydrophilicity. Fibroblasts’ performance were analyzed by attached cell number at 1 h, 4 h, and 24 h, morphology at 1 h and 4 h, viability at 1 day, 3 days, 5 days, and 7 days, recovery after wounding at 6 h, 12 h, and 24 h. RT-PCR, western blot were applied to detect attachment-related genes’ expression and protein synthesis at 4 h and 24 h. Student’s t test was used for statistical analysis. Results Tantalum-coated titanium demonstrates a layer of homogeneously distributed nano-grains with mean diameter of 25.98 (± 14.75) nm. It was found that after tantalum deposition, human gingival fibroblasts (HGFs) adhesion, viability, proliferation, and migration were promoted in comparison to the control group. An upregulated level of Integrin β1 and FAK signaling was also detected, which might be the underlying mechanism. Conclusion In the present study, adhesion, viability, proliferation, migration of human gingival fibroblasts are promoted on tantalum-coated titanium, upregulated integrin β1 and FAK might contribute to its superior performance, indicating tantalum coating can be applied in transmucosal part of dental implant. Clinical significance Tantalum deposition on titanium surfaces can promote human gingival fibroblast adhesion, accordingly forming a well-organized soft tissue sealing and may contribute to a successful osseointegration.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 555
Author(s):  
Soyoung Hur ◽  
Eungyeong Jang ◽  
Jang-Hoon Lee

Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds—kaempferol and quercetin—against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1104
Author(s):  
Cong Xie ◽  
Weikun Huang ◽  
Richard L. Young ◽  
Karen L. Jones ◽  
Michael Horowitz ◽  
...  

Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhouchen Ye ◽  
Jing Yu ◽  
Wuping Yan ◽  
Junfeng Zhang ◽  
Dongmei Yang ◽  
...  

AbstractCamellia oleifera (C. oleifera) is one of the four major woody oil-bearing crops in the world and has relatively high ecological, economic, and medicinal value. Its seeds undergo a series of complex physiological and biochemical changes during ripening, which is mainly manifested as the accumulation and transformation of certain metabolites closely related to oil quality, especially flavonoids and fatty acids. To obtain new insights into the underlying molecular mechanisms, a parallel analysis of the transcriptome and proteome profiles of C. oleifera seeds at different maturity levels was conducted using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) complemented with gas chromatography-mass spectrometry (GC-MS) data. A total of 16,530 transcripts and 1228 proteins were recognized with significant differential abundances in pairwise comparisons of samples at various developmental stages. Among these, 317 were coexpressed with a poor correlation, and most were involved in metabolic processes, including fatty acid metabolism, α-linolenic acid metabolism, and glutathione metabolism. In addition, the content of total flavonoids decreased gradually with seed maturity, and the levels of fatty acids generally peaked at the fat accumulation stage; these results basically agreed with the regulation patterns of genes or proteins in the corresponding pathways. The expression levels of proteins annotated as upstream candidates of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) as well as their cognate transcripts were positively correlated with the variation in the flavonoid content, while shikimate O-hydroxycinnamoyltransferase (HCT)-encoding genes had the opposite pattern. The increase in the abundance of proteins and mRNAs corresponding to alcohol dehydrogenase (ADH) was associated with a reduction in linoleic acid synthesis. Using weighted gene coexpression network analysis (WGCNA), we further identified six unique modules related to flavonoid, oil, and fatty acid anabolism that contained hub genes or proteins similar to transcription factors (TFs), such as MADS intervening keratin-like and C-terminal (MIKC_MADS), type-B authentic response regulator (ARR-B), and basic helix-loop-helix (bHLH). Finally, based on the known metabolic pathways and WGCNA combined with the correlation analysis, five coexpressed transcripts and proteins composed of cinnamyl-alcohol dehydrogenases (CADs), caffeic acid 3-O-methyltransferase (COMT), flavonol synthase (FLS), and 4-coumarate: CoA ligase (4CL) were screened out. With this exploratory multiomics dataset, our results presented a dynamic picture regarding the maturation process of C. oleifera seeds on Hainan Island, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this tree species.


Sign in / Sign up

Export Citation Format

Share Document