scholarly journals Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers

2022 ◽  
Vol 12 ◽  
Author(s):  
Luying He ◽  
Man Chen ◽  
Qilian Liang ◽  
Yitao Wang ◽  
Wen Tan

Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.

2019 ◽  
Vol 16 (10) ◽  
pp. 1130-1137
Author(s):  
Hayrettin Ozan Gulcan ◽  
Serkan Yigitkan ◽  
Ilkay Erdogan Orhan

High cholesterol and triglyceride levels are mainly related to further generation of lifethreating metabolism disorders including cardiovascular system diseases. Therefore, hypercholesterolemia (i.e., also referred to as hyperlipoproteinemia) is a serious disease state, which must be controlled. Currently, the treatment of hypercholesterolemia is mainly achieved through the employment of statins in the clinic, although there are alternative drugs (e.g., ezetimibe, cholestyramine). In fact, the original statins are natural products directly obtained from fungi-like molds and mushrooms and they are potent inhibitors of hydroxymethylglutaryl-CoA reductase, the key enzyme in the biosynthesis of cholesterol. This review focuses on the first identification of natural statins, their synthetic and semi-synthetic analogues, and the validation of hydroxymethylglutaryl-CoA reductase as a target in the treatment of hypercholesterolemia. Furthermore, other natural products that have been shown to possess the potential to inhibit hydroxymethylglutaryl-CoA reductase are also reviewed with respect to their chemical structures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Cai ◽  
Kewa Gao ◽  
Bi Peng ◽  
Zhijie Xu ◽  
Jinwu Peng ◽  
...  

Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently, in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers, including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT depend on several cancer-associated signaling pathways and abnormal regulatory factors in cancer cells. Moreover, emerging studies have reported several promising strategies to enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting anticancer effects on cells investigated in animal-based studies are also discussed.


1979 ◽  
Vol 65 (3) ◽  
pp. 339-344 ◽  
Author(s):  
Alberto Brutti ◽  
A. Maria Liberati ◽  
Bruno Biscottini ◽  
Giuseppe Fatati ◽  
Sergio Sini ◽  
...  

Sixteen patients with advanced gastrointestinal cancer (colorectal 12/16, gastric 4/16) were treated with a combination of 5-fluorouracil (5-FU) plus 1-(2-chlorethyl)-3(4-methyl–cycloexyl)-1-nitrosourea (Me-CCNU). The therapeutic program consisted of orally administered Me-CCNU (140 mg/m2) and intravenous 5-FU (9.5 mg/kg by bolus injection for 5 days). The cycles were repeated at 6-week intervals. At the beginning of the therapy, 11/16 patients were in performance status (PS) 0-1 and 5 patients in PS 2-3. Eight patients developed early progressive disease between the 1st and 2nd course of therapy. Only a minor tumor response was observed in the remaining 50 % of the patients. However, the patients with stabilized disease lived longer (11.8 months) than non-responders (3.5 months).


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Soyeon Jeong ◽  
Min Jee Jo ◽  
Hye Kyeong Yun ◽  
Dae Yeong Kim ◽  
Bo Ram Kim ◽  
...  

Abstract According to recent studies, Cannabidiol (CBD), one of the main components of Cannabis sativa, has anticancer effects in several cancers. However, the exact mechanism of CBD action is not currently understood. Here, CBD promoted cell death in gastric cancer. We suggest that CBD induced apoptosis by suppressing X-linked inhibitor apoptosis (XIAP), a member of the IAP protein family. CBD reduced XIAP protein levels while increasing ubiquitination of XIAP. The expression of Smac, a known inhibitor of XIAP, was found to be elevated during CBD treatment. Moreover, CBD treatment increased the interaction between XIAP and Smac by increasing Smac release from mitochondria to the cytosol. CBD has also been shown to affect mitochondrial dysfunction. Taken together, these results suggest that CBD may have potential as a new therapeutic target in gastric cancer.


2020 ◽  
Vol 20 (11) ◽  
pp. 958-974 ◽  
Author(s):  
Anahita Boveiri Dehsheikh ◽  
Mohammad Mahmoodi Sourestani ◽  
Paria Boveiri Dehsheikh ◽  
Javad Mottaghipisheh ◽  
Sara Vitalini ◽  
...  

Medicinal plants have a wide range of secondary metabolites including monoterpene. These volatile compounds are the main components of essential oils, belonging to the isoprenoid group and possessing valuable features for plants and humans. This review provides comprehensive information on chemical structures and classification of monoterpenes. It describes their biosynthesis pathways and introduces plant families and species rich in noteworthy monoterpenes. Bio-activities, pharmacological and pesticide effects as well as their mechanism of action are reported. Applications of these compounds in various industries are also included.


2021 ◽  
Vol 11 (9) ◽  
pp. 3808
Author(s):  
Heidi Meriö-Talvio ◽  
Jinze Dou ◽  
Tapani Vuorinen ◽  
Leena Pitkänen

Willow bark water extracts contain a mixture of chemically heterogeneous compounds. Fast screening techniques of the extracts are often needed to obtain information on the profile of bioactive and/or other valuable components in the extract. This is, however, a challenging task due to the different chemical structures of the components. Willow bark extract from the hybrid Karin contains several bioactive compounds such as aromatic picein, triandrin, and (+)-catechin. Willow bark extract also contains significant amounts of the monosaccharides fructose and glucose. Here, we demonstrate the applicability of hydrophilic interaction liquid chromatography, coupled with evaporative light scattering and ultraviolet detectors, for the simultaneous separation and quantification of major aromatic compounds and monosaccharides from the willow bark extract. The ternary eluent mixture consisting of acetonitrile, water, and methanol enabled the baseline separation of the main components in the extract in a short analysis time, which makes this method ideal for fast screening of the plant extracts and investigating the purity of fractionated bioactive compounds.


2019 ◽  
Vol 627 ◽  
pp. A37
Author(s):  
E. Artur de la Villarmois ◽  
L. E. Kristensen ◽  
J. K. Jørgensen

Context. Recent results suggest that the first steps towards planet formation may be already taking place in protoplanetary discs during the first 100 000 yr after stars form. It is therefore crucial to unravel the physical and chemical structures of such discs in their earliest stages while they are still embedded in their natal envelopes and compare them with more evolved systems. Aims. The purpose of this paper is to explore the structure of a line-rich Class I protobinary source, Oph-IRS 67, and analyse the differences and similarities with Class 0 and Class II sources. Methods. We present a systematic molecular line study of IRS 67 with the Submillimeter Array (SMA) on 1–2′′ (150–300 AU) scales. The wide instantaneous band-width of the SMA observations (~30 GHz) provide detections of a range of molecular transitions that trace different physics, such as CO isotopologues, sulphur-bearing species, deuterated species, and carbon-chain molecules. Results. We see significant differences between different groups of species. For example, the CO isotopologues and sulphur-bearing species show a rotational profile and are tracing the larger-scale circumbinary disc structure, while CN, DCN, and carbon-chain molecules peak at the southern edge of the disc at blue-shifted velocities. In addition, the cold gas tracer DCO+ is seen beyond the extent of the circumbinary disc. Conclusions. The detected molecular transitions can be grouped into three main components: cold regions far from the system, the circumbinary disc, and a UV-irradiated region likely associated with the surface layers of the disc that are reached by the UV radiation from the sources. The different components are consistent with the temperature structure derived from the ratio of two H2CO transitions, that is, warm temperatures are seen towards the outflow direction, lukewarm temperatures are associated with the UV-radiated region, and cold temperatures are related with the circumbinary disc structure. The chemistry towards IRS 67 shares similarities with both Class 0 and Class II sources, possibly due to the high gas column density and the strong UV radiation arising from the binary system. IRS 67 is, therefore, highlighting the intermediate chemistry between deeply embedded sources and T-Tauri discs.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4567 ◽  
Author(s):  
Xiang-Peng Kong ◽  
Etta Y.L. Liu ◽  
Zhi-Cong Chen ◽  
Miranda Li Xu ◽  
Anna X.D. Yu ◽  
...  

Alkaloids having acetylcholinesterase (AChE) inhibitory activity are commonly found in traditional Chinese medicine (TCM); for example, berberine from Coptis chinensis, galantamine from Lycoris radiata, and huperzine A from Huperzia serrata. In practice of TCM, Stephaniae Tetrandrae Radix (STR) is often combined with Coptidis Rhizoma (CR) or Phellodendri Chinensis Cortex (PCC) as paired herbs during clinical application. Fangchinoline from STR and coptisine and/or berberine from CR and/or PCC are active alkaloids in inhibiting AChE. The traditional usage of paired herbs suggests the synergistic effect of fangchinoline–coptisine or fangchinoline–berberine pairing in AChE inhibition. HPLC was applied to identify the main components in herbal extracts of STR, CR, and PCC, and the AChE inhibition of their main components was determined by Ellman assay. The synergism of herb combination and active component combination was calculated by median-effect principle. Molecular docking was applied to investigate the underlying binding mechanisms of the active components with the AChE protein. It was found that fangchinoline showed AChE inhibitory potency; furthermore, fangchinoline–coptisine/berberine pairs (at ratios of 1:5, 1:2, 1:1, and 2:1) synergistically inhibited AChE; the combination index (CI) at different ratios was less than one when Fa = 0.5, suggesting synergistic inhibition of AChE. Furthermore, the molecular docking simulation supported this enzymatic inhibition. Therefore, fangchinoline–coptisine/berberine pairs, or their parental herbal mixtures, may potentially be developed as a possible therapeutic strategy for Alzheimer’s patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Mansoori ◽  
M. Fryknäs ◽  
C. Alvfors ◽  
A. Loskog ◽  
R. Larsson ◽  
...  

AbstractMebendazole is used extensively for treatment of local gut helminthic and invasive echinococcus infections. Anticancer effects of mebendazole have been shown in experimental cancer models and in case studies in patients with advanced cancer. Given these observations, the aims of this study were to investigate safety and efficacy of individualized dosed mebendazole in the cancer indication. Patients with treatment refractory gastrointestinal cancer were treated with individualized dose adjusted mebendazole up to 4 g/day to target a serum concentration of 300 ng/ml. Efficacy and safety were assessed by CT-scans, clinical surveillance and blood sampling. Eleven patients were included in the study and 10 started the treatment phase. Two patients stopped treatment prior to and the remaining eight after tumour evaluation by CT-scan at 8 weeks, all due to progressive disease. Four patients also fulfilled criteria suggested for hyperprogression. Only five patients reached the target serum-mebendazole concentration. No severe adverse effects were observed. Individualized dose adjusted mebendazole is safe and well tolerated in patients with advanced cancer but all patients experienced rapid progressive disease. New approaches such as prodrug development and combination with other anticancer drugs seem needed for further exploration of mebendazole as an anticancer drug.


Sign in / Sign up

Export Citation Format

Share Document