scholarly journals Cinobufagin Is a Selective Anti-Cancer Agent against Tumors with EGFR Amplification and PTEN Deletion

2021 ◽  
Vol 12 ◽  
Author(s):  
Kunyan He ◽  
Guang-Xing Wang ◽  
Li-Nan Zhao ◽  
Xiao-Fang Cui ◽  
Xian-Bin Su ◽  
...  

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor, and almost half of the patients carrying EGFR-driven tumor with PTEN deficiency are resistant to EGFR-targeted therapy. EGFR amplification and/or mutation is reported in various epithelial tumors. This series of studies aimed to identify a potent compound against EGFR-driven tumor. We screened a chemical library containing over 600 individual compounds purified from Traditional Chinese Medicine against GBM cells with EGFR amplification and found that cinobufagin, the major active ingredient of Chansu, inhibited the proliferation of EGFR amplified GBM cells and PTEN deficiency enhanced its anti-proliferation effects. Cinobufagin also strongly inhibited the proliferation of carcinoma cell lines with wild-type or mutant EGFR expression. In contrast, the compound only weakly inhibited the proliferation of cancer cells with low or without EGFR expression. Cinobufagin blocked EGFR phosphorylation and its downstream signaling, which additionally induced apoptosis and cytotoxicity in EGFR amplified cancer cells. In vivo, cinobufagin blocked EGFR signaling, inhibited cell proliferation, and elicited apoptosis, thereby suppressing tumor growth in both subcutaneous and intracranial U87MG-EGFR xenograft mouse models and increasing the median survival of nude mice bearing intracranial U87MG-EGFR tumors. Cinobufagin is a potential therapeutic agent for treating malignant glioma and other human cancers expressing EGFR.

Author(s):  
Sunmi Lee ◽  
Eun-Kyung Lee ◽  
Dong Hoon Kang ◽  
Jiyoung Lee ◽  
Soo Hyun Hong ◽  
...  

AbstractGlutathione peroxidase (GPx) is a selenocysteine-containing peroxidase enzyme that defends mammalian cells against oxidative stress, but the role of GPx signaling is poorly characterized. Here, we show that GPx type 1 (GPx1) plays a key regulatory role in the apoptosis signaling pathway. The absence of GPx1 augmented TNF-α-induced apoptosis in various RIPK3-negative cancer cells by markedly elevating the level of cytosolic H2O2, which is derived from mitochondria. At the molecular level, the absence of GPx1 led to the strengthened sequential activation of sustained JNK and caspase-8 expression. Two signaling mechanisms are involved in the GPx1-dependent regulation of the apoptosis pathway: (1) GPx1 regulates the level of cytosolic H2O2 that oxidizes the redox protein thioredoxin 1, blocking ASK1 activation, and (2) GPx1 interacts with TRAF2 and interferes with the formation of the active ASK1 complex. Inducible knockdown of GPx1 expression impaired the tumorigenic growth of MDA-MB-231 cells (>70% reduction, P = 0.0034) implanted in mice by promoting apoptosis in vivo. Overall, this study reveals the apoptosis-related signaling function of a GPx family enzyme highly conserved in aerobic organisms.


2021 ◽  
Vol 22 (11) ◽  
pp. 5590
Author(s):  
Clément Veys ◽  
Abderrahim Benmoussa ◽  
Romain Contentin ◽  
Amandine Duchemin ◽  
Emilie Brotin ◽  
...  

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1469
Author(s):  
Hanmin Wang ◽  
Evgeny Chirshev ◽  
Nozomi Hojo ◽  
Tise Suzuki ◽  
Antonella Bertucci ◽  
...  

We aimed to determine the mechanism of epithelial–mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked let-7 repression and acquisition of stemness with the EMT factor, SNAI1. The mechanisms for the loss of let-7 in cancer cells are incompletely understood. In four carcinoma cell lines from breast cancer, pancreatic cancer, and ovarian cancer and in ovarian cancer patient-derived cells, we analyzed stem cell phenotype and tumor growth via mRNA, miRNA, and protein expression, spheroid formation, and growth in patient-derived xenografts. We show that treatment with EMT-promoting growth factors or SNAI1 overexpression increased stemness and reduced let-7 expression, while SNAI1 knockdown reduced stemness and restored let-7 expression. Rescue experiments demonstrate that the pro-stemness effects of SNAI1 are mediated via let-7. In vivo, nanoparticle-delivered siRNA successfully knocked down SNAI1 in orthotopic patient-derived xenografts, accompanied by reduced stemness and increased let-7 expression, and reduced tumor burden. Chromatin immunoprecipitation demonstrated that SNAI1 binds the promoters of various let-7 family members, and luciferase assays revealed that SNAI1 represses let-7 transcription. In conclusion, the SNAI1/let-7 axis is an important component of stemness pathways in cancer cells, and this study provides a rationale for future work examining this axis as a potential target for cancer stem cell-specific therapies.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3906-3912 ◽  
Author(s):  
Jorg A. Kruger ◽  
Charles D. Kaplan ◽  
Yunping Luo ◽  
He Zhou ◽  
Dorothy Markowitz ◽  
...  

AbstractRecently, the cancer stem cell hypothesis has gained significant recognition as the descriptor of tumorigenesis. Although previous studies relied on transplanting human or rat tumor cells into immunecompromised mice, our study used the Hoechst 33342 dye–based side population (SP) technique to isolate and transplant stem cell–like cancer cells (SCLCCs) from the 4T1 and NXS2 murine carcinoma cell lines into the immune-competent microenvironment of syngeneic mice. 4T1 cells displayed an SP of 2% with a Sca-1highc-Kit–CD45– phenotype, whereas NXS2 cells contained an SP of 0.2% with a Sca-1highCD24highc-Kit–CD45–GD high2 phenotype. Reverse transcription–polymerase chain reaction (RT-PCR) further revealed up-regulation in SP cells of ABCG2, Sca-1, Wnt-1, and TGF-β2. Additionally, 4T1 and NXS2 SP cells exhibited increased resistance to chemotherapy, and 4T1 SP cells also showed an increased ability to efflux doxorubicin, which correlated with a selective increase in the percentage of SP cells found in the tumors of doxorubicin-treated mice. Most importantly, SP cells showed a markedly higher repopulation and tumorigenic potential in vivo, which correlated with an increased number of cells in the SP compartment of SP-derived tumors. Taken together, these results show that we successfully characterized SCLCCs from 2 murine carcinoma cell lines in the immune-competent microenvironment of syngeneic mice.


2021 ◽  
Vol 22 (22) ◽  
pp. 12502
Author(s):  
Shoji Kokubo ◽  
Shinobu Ohnuma ◽  
Megumi Murakami ◽  
Haruhisa Kikuchi ◽  
Shota Funayama ◽  
...  

The ATP-binding cassette subfamily G member 2 (ABCG2) transporter is involved in the development of multidrug resistance in cancer patients. Many inhibitors of ABCG2 have been reported to enhance the chemosensitivity of cancer cells. However, none of these inhibitors are being used clinically. The aim of this study was to identify novel ABCG2 inhibitors by high-throughput screening of a chemical library. Among the 5812 compounds in the library, 23 compounds were selected in the first screening, using a fluorescent plate reader-based pheophorbide a (PhA) efflux assay. Thereafter, to validate these compounds, a flow cytometry-based PhA efflux assay was performed and 16 compounds were identified as potential inhibitors. A cytotoxic assay was then performed to assess the effect these 16 compounds had on ABCG2-mediated chemosensitivity. We found that the phenylfurocoumarin derivative (R)-9-(3,4-dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo [3,2-g]chromen-7-one (PFC) significantly decreased the IC50 of SN-38 in HCT-116/BCRP colon cancer cells. In addition, PFC stimulated ABCG2-mediated ATP hydrolysis, suggesting that this compound interacts with the substrate-binding site of ABCG2. Furthermore, PFC reversed the resistance to irinotecan without causing toxicity in the ABCG2-overexpressing HCT-116/BCRP cell xenograft mouse model. In conclusion, PFC is a novel inhibitor of ABCG2 and has promise as a therapeutic to overcome ABCG2-mediated MDR, to improve the efficiency of cancer chemotherapy.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Xin Diao ◽  
Danfen Yang ◽  
Yu Chen ◽  
Wentian Liu

AbstractBaicalin is the main bioactive component extracted from the traditional Chinese medicine Baical Skullcap Root, and its anti-tumor activity has been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in many cancer cells and stimulates the tumorigenic properties, and so, it is a pivotal target for agent to cure cancers. We reported for the first time that baicalin suppressed PBK/TOPK activities by directly binding with PBK/TOPK in vitro and in vivo. Ex vivo studies showed that baicalin suppressed PBK/TOPK activity in JB6 Cl41 cells and H441 lung cancer cells. Moreover, knockdown of PBK/TOPK in H441 cells decreased their sensitivity to baicalin. In vivo study indicated that injection of baicalin in H441 tumor-bearing mice effectively suppressed cancer growth. The PBK/TOPK downstream signaling molecules Histone H3 and ERK2 in tumor tissues were also decreased after baicalin treatment. Taken together, baicalin can inhibit proliferation of lung cancer cells as a PBK/TOPK inhibitor both in vitro and in vivo.


2010 ◽  
Vol 649 (1-3) ◽  
pp. 120-126 ◽  
Author(s):  
Anning Yin ◽  
Yingan Jiang ◽  
Xianfeng Zhang ◽  
Juan Zhao ◽  
Hesheng Luo

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 362 ◽  
Author(s):  
Fairouz Sioud ◽  
Souheila Amor ◽  
Imène ben Toumia ◽  
Aida Lahmar ◽  
Virginie Aires ◽  
...  

Despite major advances in the last 10 years, whether in terms of prevention or treatment, the 5 year survival rate remains relatively low for a large number of cancers. These therapeutic failures can be the consequence of several factors associated with the cellular modifications or with the host by itself, especially for some anticancer drugs such as cisplatin, which induces a nephrotoxicity. In the strategy of research for active molecules capable both of exerting a protective action against the deleterious effects of cisplatin and exerting a chemosensitizing action with regard to cancer cells, we tested the potential effects of Ephedra alata Decne extract (E.A.) rich in polyphenolic compounds towards a 4T1 breast cancer model in vitro and in vivo. We showed that E.A. extract inhibited cell viability of 4T1 breast cancer cells and induced apoptosis in a caspase-dependent manner, which involved intrinsic pathways. Very interestingly, we observed a synergic antiproliferative and pro-apoptotic action with cisplatin. These events were associated with a strong decrease of breast tumor growth in mice treated with an E.A./cisplatin combination and simultaneously with a decrease of hepato- and nephrotoxicities of cisplatin.


Sign in / Sign up

Export Citation Format

Share Document