scholarly journals Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment

2021 ◽  
Vol 12 ◽  
Author(s):  
Steven R. Botts ◽  
Jason E. Fish ◽  
Kathryn L. Howe

Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae. Despite decades of research, we still do not fully understand the complex cell-cell interactions that drive atherosclerosis, but new investigative approaches are rapidly shedding light on these essential mechanisms. The vascular endothelium resides at the interface of systemic circulation and the underlying vessel wall and plays an essential role in governing pathophysiological processes during atherogenesis. In this review, we present emerging evidence that implicates the activated endothelium as a driver of atherosclerosis by directing site-specificity of plaque formation and by promoting plaque development through intracellular processes, which regulate endothelial cell proliferation and turnover, metabolism, permeability, and plasticity. Moreover, we highlight novel mechanisms of intercellular communication by which endothelial cells modulate the activity of key vascular cell populations involved in atherogenesis, and discuss how endothelial cells contribute to resolution biology – a process that is dysregulated in advanced plaques. Finally, we describe important future directions for preclinical atherosclerosis research, including epigenetic and targeted therapies, to limit the progression of atherosclerosis in at-risk or affected patients.

2002 ◽  
Vol 88 (11) ◽  
pp. 834-842 ◽  
Author(s):  
Giuseppe Pintucci ◽  
Scott Froum ◽  
Jared Pinnell ◽  
Paolo Mignatti ◽  
Shahin Rafii ◽  
...  

SummaryIn addition to their role in primary hemostasis, platelets serve to support and maintain the vascular endothelium. Platelets contain numerous growth factors including the potent angiogenic inducers VEGF and FGF-2. To characterize the function of these two plateletassociated growth factors, the effects of the addition of purified platelets to cultured endothelial cells were examined. The survival and proliferation of endothelial cells were markedly stimulated (2-3-fold and 5-15-fold respectively) by the addition of gel-filtered platelets. Acetylsalicylic acid-treated or lyophilized fixed-platelets were ineffective in supporting endothelial cell proliferation. In Transwell assays, the stimulatory effect of platelets on endothelial cells was preserved, consistent with an effect mediated by secreted factors. The combined inhibition of VEGF and FGF-2 by neutralizing antibodies, in contrast to inhibition of either alone, abrogated both platelet-induced endothelial cell survival and proliferation. FGF-2 isoforms were detected in platelet lysates, as well as in the releasates of agonist-stimulated platelets. Megakaryocytes generated by ex vivo expansion of hematopoietic progenitor cells with kit ligand and thrombopoietin were analyzed for expression of FGF-2. Punctate cytoplasmic staining but no nuclear staining was observed by immunocytochemistry consistent with possible localization of the growth factor to cytoplasmic granules. The addition of platelets to cultured endothelial cells activated extracellular signal-regulated kinase (ERK) in a dose and time-dependent manner. This effect was abrogated by both anti-FGF-2 and anti-VEGF antibody. Since FGF-2 and VEGF are potent angiogenic factors and known endothelial cell survival factors, their release by platelets provides a plausible mechanism for the platelet support of vascular endothelium.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


1997 ◽  
Vol 78 (05) ◽  
pp. 1392-1398 ◽  
Author(s):  
A Schneider ◽  
M Chandra ◽  
G Lazarovici ◽  
I Vlodavsky ◽  
G Merin ◽  
...  

SummaryPurpose: Successful development of a vascular prosthesis lined with endothelial cells (EC) may depend on the ability of the attached cells to resist shear forces after implantation. The present study was designed to investigate EC detachment from extracellular matrix (ECM) precoated vascular prostheses, caused by shear stress in vitro and to test the performance of these grafts in vivo. Methods: Bovine aortic endothelial cells were seeded inside untreated polytetrafluoro-ethylene (PTFE) vascular graft (10 X 0.6 cm), PTFE graft precoated with fibronectin (FN), or PTFE precoated with FN and a naturally produced ECM (106 cells/graft). Sixteen hours after seeding the medium was replaced and unattached cells counted. The strength of endothelial cell attachment was evaluated by subjecting the grafts to a physiologic shear stress of 15 dynes/cm2 for 1 h. The detached cells were collected and quantitated. PTFE or EC preseeded ECM coated grafts were implanted in the common carotid arteries of dogs. Results: While little or no differences were found in the extent of endothelial cell attachment to the various grafts (79%, 87% and 94% of the cells attached to PTFE, FN precoated PTFE, or FN+ECM precoated PTFE, respectively), the number of cells retained after a shear stress was significanly increased on ECM coated PTFE (20%, 54% and 85% on PTFE, FN coated PTFE, and FN+ECM coated PTFE, respectively, p <0.01). Implantation experiments in dogs revealed a significant increase in EC coverage and a reduced incidence of thrombus formation on ECM coated grafts that were seeded with autologous saphenous vein endothelial cells prior to implantation. Conclusion: ECM coating significantly increased the strength of endothelial cell attachment to vascular prostheses subjected to shear stress. The presence of adhesive macromolecules and potent endothelial cell growth promoting factors may render the ECM a promising substrate for vascular prostheses.


2018 ◽  
Vol 64 (4) ◽  
pp. 504-507
Author(s):  
Vladimir Klimovich ◽  
Natalya Vartanyan ◽  
Anastasiya Stolbovaya ◽  
Lidiya Terekhina ◽  
Olga Shashkova ◽  
...  

During last years monoclonal antibodies (MAB) directed against vascular endothelium markers demonstrated their efficiency for visualization and targeted delivery of therapeutic drugs to tumors. Endoglin (CD105) which serves as a key element that determines endothelial cells quiescence or activation is one of such markers. Endoglin is highly expressed on the vascular endothelium of growing tumors. A first panel of MAB against endoglin in our country was produced at the hybridoma technology laboratory of RRC RST named after A.M. Granov. On the basis of these MAB ELISA was created allowing detection of endoglin in human plasma and other biological fluids. Several MAB had been shown to bind endoglin on the membrane of the cultured endothelial cells and to persist there for several hours. During the first 30 min after binding some of the immune complexes “endoglin-MAB” were internalized into the cytoplasm and were found included in the endosomes. In future these MAB can be used to create the reagents for the addressed delivery of isotope tags both on the membrane and into the cytoplasm of endothelial cells.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 621
Author(s):  
Maria Grazia Muoio ◽  
Marianna Talia ◽  
Rosamaria Lappano ◽  
Andrew H. Sims ◽  
Veronica Vella ◽  
...  

Background: Breast cancer (BC) mortality is increased among obese and diabetic patients. Both obesity and diabetes are associated with dysregulation of both the IGF-1R and the RAGE (Receptor for Advanced Glycation End Products) pathways, which contribute to complications of these disorders. The alarmin S100A7, signaling through the receptor RAGE, prompts angiogenesis, inflammation, and BC progression. Methods: We performed bioinformatic analysis of BC gene expression datasets from published studies. We then used Estrogen Receptor (ER)-positive BC cells, CRISPR-mediated IGF-1R KO BC cells, and isogenic S100A7-transduced BC cells to investigate the role of IGF-1/IGF-1R in the regulation of S100A7 expression and tumor angiogenesis. To this aim, we also used gene silencing and pharmacological inhibitors, and we performed gene expression and promoter studies, western blotting analysis, ChIP and ELISA assays, endothelial cell proliferation and tube formation assay. Results: S100A7 expression correlates with worse prognostic outcomes in human BCs. In BC cells, the IGF-1/IGF-1R signaling engages STAT3 activation and its recruitment to the S100A7 promoter toward S100A7 increase. In human vascular endothelial cells, S100A7 activates RAGE signaling and prompts angiogenic effects. Conclusions: In ER-positive BCs the IGF-1 dependent activation of the S100A7/RAGE signaling in adjacent endothelial cells may serve as a previously unidentified angiocrine effector. Targeting S100A7 may pave the way for a better control of BC, particularly in conditions of unopposed activation of the IGF-1/IGF-1R axis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lukas S. Tombor ◽  
David John ◽  
Simone F. Glaser ◽  
Guillermo Luxán ◽  
Elvira Forte ◽  
...  

AbstractEndothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network.


2001 ◽  
Vol 168 (3) ◽  
pp. 409-416 ◽  
Author(s):  
SE Dickson ◽  
R Bicknell ◽  
HM Fraser

Vascular endothelial growth factor (VEGF) is essential for the angiogenesis required for the formation of the corpus luteum; however, its role in ongoing luteal angiogenesis and in the maintenance of the established vascular network is unknown. The aim of this study was to determine whether VEGF inhibition could intervene in ongoing luteal angiogenesis using immunoneutralisation of VEGF starting in the mid-luteal phase. In addition, the effects on endothelial cell survival and the recruitment of periendothelial support cells were examined. Treatment with a monoclonal antibody to VEGF, or mouse gamma globulin for control animals, commenced on day 7 after ovulation and continued for 3 days. Bromodeoxyuridine (BrdU), used to label proliferating cells to obtain a proliferation index, was administered one hour before collecting ovaries from control and treated animals. Ovarian sections were stained using antibodies to BrdU, the endothelial cell marker, CD31, the pericyte marker, alpha-smooth muscle actin, and 3' end DNA fragments as a marker for apoptosis. VEGF immunoneutralisation significantly suppressed endothelial cell proliferation and the area occupied by endothelial cells while increasing pericyte coverage and the incidence of endothelial cell apoptosis. Luteal function was markedly compromised by anti-VEGF treatment as judged by a 50% reduction in plasma progesterone concentration. It is concluded that ongoing angiogenesis in the mid-luteal phase is primarily driven by VEGF, and that a proportion of endothelial cells of the mid-luteal phase vasculature are dependent on VEGF support.


2007 ◽  
Vol 293 (2) ◽  
pp. H1023-H1030 ◽  
Author(s):  
Yu Yao ◽  
Aleksandr Rabodzey ◽  
C. Forbes Dewey

Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports that modifying the amount of the glycocalyx affects both short-term and long-term shear responses significantly. It is well established that after 24 h of laminar flow, endothelial cells align in the direction of flow and their proliferation is suppressed. We report here that by removing the glycocalyx by using the specific enzyme heparinase III, endothelial cells no longer align under flow after 24 h and they proliferate as if there were no flow present. In addition, confluent endothelial cells respond rapidly to flow by decreasing their migration speed by 40% and increasing the amount of vascular endothelial cadherin in the cell-cell junctions. These responses are not observed in the cells treated with heparinase III. Heparan sulfate proteoglycans (a major component of the glycocalyx) redistribute after 24 h of flow application from a uniform surface profile to a distinct peripheral pattern with most molecules detected above cell-cell junctions. We conclude that the presence of the glycocalyx is necessary for the endothelial cells to respond to fluid shear, and the glycocalyx itself is modulated by the flow. The redistribution of the glycocalyx also appears to serve as a cell-adaptive mechanism by reducing the shear gradients that the cell surface experiences.


1996 ◽  
Vol 270 (2) ◽  
pp. C522-C529 ◽  
Author(s):  
M. G. Bouma ◽  
F. A. van den Wildenberg ◽  
W. A. Buurman

Ischemia induces excessive ATP catabolism with subsequent local release of its metabolite adenosine, an autacoid with anti-inflammatory properties. Because activation of the vascular endothelium is critical to the inflammatory host response during ischemia and reperfusion, the effects of adenosine on two major determinants of endothelial cell activation (i.e., the release of proinflammatory cytokines and the expression of adhesion molecules) were studied. Adenosine dose dependently inhibited the release of interleukin (IL)-6 and IL-8 by stimulated human umbilical vein endothelial cells (HUVEC). Expression of E-selectin and vascular cell adhesion molecule 1 (VCAM-1), but not intercellular adhesion molecule 1 (ICAM-1), by activated HUVEC was also reduced by adenosine. Inhibition of endogenous adenosine deaminase activity by erythro-9-(2-hydroxy-3-nonyl)adenine or 2'-deoxycoformycin strongly enhanced the inhibitory effects of exogenous adenosine on cytokine release and expression of E-selectin and VCAM-1. However, a clear role for specific adenosine receptors in the described inhibitory events could not be established. Together, these data imply that the vascular endothelium constitutes an important target for the anti-inflammatory actions of adenosine.


Sign in / Sign up

Export Citation Format

Share Document