scholarly journals Manual Therapy With Rest as a Treatment for Established Inflammation and Fibrosis in a Rat Model of Repetitive Strain Injury

2021 ◽  
Vol 12 ◽  
Author(s):  
Mary F. Barbe ◽  
Siva Tejaa Panibatla ◽  
Michele Y. Harris ◽  
Mamta Amin ◽  
Jocelynne T. Dorotan ◽  
...  

Background: Repetitive strain injuries caused by repetitive occupational work are difficult to prevent for multiple reasons. Therefore, we examined the effectiveness of manual therapy (MT) with rest to treat the inflammation and fibrosis that develops through the performance of a repetitive task. We hypothesized that this treatment would reduce task-induced sensorimotor declines and neuromuscular inflammation.Methods: Twenty-nine female Sprague-Dawley rats performed a reaching and lever-pulling task for 14weeks. All ceased performing the task at 14weeks. Ten were euthanized at this timepoint (TASK). Nine received manual therapy to their upper extremities while resting 7weeks (MTR); 10 were assigned to rest alone (REST). Ten additional food restricted rats were included that neither performed the task nor received manual therapy (FRC).Results: Confirming previous experiments, TASK rats showed behavioral changes (forepaw mechanical hypersensitivity, reduced grip strength, lowered forelimb/forepaw agility, and noxious cold temperature sensitivity), reduced median nerve conduction velocity (NCV), and pathological tissue changes (myelin degradation, increased median nerve and muscle inflammation, and collagen production). Manual therapy with rest (MTR) ameliorated cold sensitivity seen in REST rats, enhanced muscle interleukin 10 (IL-10) more than in REST rats, lead to improvement in most other measures, compared to TASK rats. REST rats showed improved grip strength, lowered nerve inflammation and degraded myelin, and lowered muscle tumor necrosis factor alpha (TNFα) and collagen I levels, compared to TASK rats, yet maintained lowered forelimb/forepaw agility and NCV, and increased neural fibrosis.Conclusion: In our model of repetitive motion disorder, manual therapy during rest had modest effects on behavioral, histological, and physiological measures, compared to rest alone. These findings stand in contrast to the robust preventive effects of manual therapy in this same model.

2021 ◽  
Author(s):  
Muzhou Teng ◽  
Zhijia Li ◽  
Zhihui Lu ◽  
Keke Wu ◽  
Jinshan Guo

Abstract Background: Efficient resolution of oxidative stress, inflammation and bacterial infections are crucial for wound healing. To surmount these problems, tannic acid (TA)-bridged CeO2 microcubes and chitosan (CS) (CS-TA@CeO2) cryogel was fabricated through hydrogen bonding interactions as a multifunctional wound dressing. Results: The physicochemical characterizations confirmed the successful introduction and uniform incorporation of TA@CeO2 microcubes into CS network. Thus-obtained CS-TA@CeO2 cryogels displayed suitable porous structure and swelling ratio. The CS-TA@CeO2 cryogels exhibited favorable antioxidant ability evidenced by scavenging more than 82.9% ROS in vitro and significantly increasing the antioxidant enzyme levels in vivo. The anti-inflammatory ability of the cryogels was confirmed by the downregulated expression of the inflammatory cytokine, tumor necrosis factor-alpha (TNF-α) and the upregulated expression of the anti-inflammatory cytokine, interleukin-10 (IL-10). The multifunctional cryogels also showed excellent antibacterial activities against Gram-positive (S.aureus) and Gram-negative (E.coli) bacteria. Furthermore, the cryogels can promote the adhesion and proliferation of mouse fibroblasts (L929) cells. Moreover, CS-TA@CeO2 cryogels presented excellent hemostatic performance in rat tail amputation model. In vivo Sprague-Dawley (SD) rats full-thickness experiments illustrated that the cryogels can significantly accelerate wound healing through providing considerable antioxidant activity, promoting angiogenesis, and increasing collagen deposition. Conclusions: Overall, the multifunctional CS-TA@CeO2 cryogels showed great potential for wound healing.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yu-Qing Ma ◽  
Yi-Rong Chen ◽  
Yu-Fang Leng ◽  
Zhi-Wei Wu

Fifty-four Sprague-Dawley rats weighing 200~240 g were randomly divided into sham-operated group (sham group), vehicle-treated SNL group (model group), and Tan IIA-treated SNL group (Tan IIA group). Tan IIA was administered intraperitoneally to rats in the Tan IIA-treated group at a dose of 30 mg/kg daily for 14 days after SNL surgery. Paw withdrawal mechanical thresholds (PWTs) and paw withdrawal thermal latencies (PWLs) were measured. High-mobility group box 1 (HMGB1) and Toll-like Receptor 4 (TLR4) mRNA and protein expression in the spinal cord were measured. Tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-10 (IL-10) in the spinal cord were measured, too. Both the mechanical and heat pain thresholds were significantly decreased. After Tan IIA treatment, HMGB1, and TLR4 mRNA and protein levels, the expression of TNF-αand IF-1βwas reduced significantly. In conclusion, Tanshinone IIA reversed SNL-induced thermal hyperalgesia and mechanical allodynia and downregulated HMGB1 and TLR4 levels and inhibited the HMGB1-TLR4 pathway. Tanshinone IIA inhibited TNF-αand IL-1βexpression but not IF-10 expression in the spinal cords of SNL rats. These results indicate that Tanshinone IIA inhibited SNL-induced neuropathic pain via multiple effects, and targeting the HMGB1-TLR4 pathway could serve as the basis of new antinociceptive agents.


Author(s):  
Leticia Borfe ◽  
Caroline Brand ◽  
Letícia Schneiders ◽  
Jorge Mota ◽  
Claudia Cavaglieri ◽  
...  

Physical exercise reduces the biochemical markers of obesity, but the effects of multicomponent interventions on these markers should be explored. The present study aimed to elucidate how overweight/obese adolescents respond to a multicomponent program approach on body composition, physical fitness, and inflammatory markers, using a quasi-experimental study with 33 overweight/obesity adolescents (control group (CG) = 16; intervention group (IG) = 17). The intervention consisted of 24 weeks with physical exercises and nutritional and psychological guidance. Both groups were evaluated at the pre/post-intervention moments on body mass index (BMI); body fat (%Fat); waist circumference (WC); waist/hip ratio (WHR); waist-to-height ratio (WHtR), cardiorespiratory fitness (CRF); abdominal strength, flexibility; leptin; interleukin 6; interleukin 10; and tumor necrosis factor-alpha. Mixed-analysis of variance and generalized estimation equations were used for statistical analysis. There was an interaction effect between groups and time on %Fat (p = 0.002), WC (p = 0.023), WHR (p < 0.001), WHtR (p = 0.035), CRF (p = 0.050), and leptin (p = 0.026). Adolescents were classified as 82.4% responders for %Fat, 70.6% for WC, 88.2% for WHR, and 70.6% for CRF. Further, there was an association between changes in %Fat (p = 0.033), WC (p = 0.032), and WHR (p = 0.033) between responders and non-responders with CRF in the IG. There was a positive effect on body composition, physical fitness, and leptin. In addition, reductions in body composition parameters were explained by CRF improvements.


Pain Medicine ◽  
2011 ◽  
Vol 12 (10) ◽  
pp. 1464-1469 ◽  
Author(s):  
Omer Ates ◽  
Semiha Kurt ◽  
Julide Altinisik ◽  
Hatice Karaer ◽  
Saime Sezer

2010 ◽  
Vol 78 (11) ◽  
pp. 4763-4772 ◽  
Author(s):  
Raquel M. Gonçalves ◽  
Karina C. Salmazi ◽  
Bianca A. N. Santos ◽  
Melissa S. Bastos ◽  
Sandra C. Rocha ◽  
...  

ABSTRACT Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4+ CD25+ Foxp3+ Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123+), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-α) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and long-lasting protective immunity to malaria.


1996 ◽  
Vol 184 (1) ◽  
pp. 19-29 ◽  
Author(s):  
H Groux ◽  
M Bigler ◽  
J E de Vries ◽  
M G Roncarolo

Human CD4+ T cells, activated by allogeneic monocytes in a primary mixed lymphocyte reaction in the presence of exogenous interleukin (IL) 10, specifically failed to proliferate after restimulation with the same alloantigens. A comparable state of T cell unresponsiveness could be induced by activation of CD4+ T cells by cross-linked anti-CD3 monoclonal antibodies (mAbs) in the presence of exogenous IL-10. The anergic T cells failed to produce IL-2, IL-5, IL-10, interferon gamma, tumor necrosis factor alpha, and granulocyte/macrophage colony-stimulating factor. The IL-10-induced anergic state was long-lasting. T cell anergy could not be reversed after restimulation of the cells with anti-CD3 and anti-CD28 mAbs, although CD3 and CD28 expression was normal. In addition, restimulation of anergized T cells with anti-CD3 mAbs induced normal Ca2+ fluxes and resulted in increased CD3, CD28, and class II major histocompatibility complex expression, indicating that calcineurin-mediated signaling occurs in these anergic cells. However, the expression of the IL-2 receptor alpha chain was not upregulated, which may account for the failure of exogenous IL-2 to reverse the anergic state. Interestingly, anergic T cells and their nonanergic counterparts showed comparable levels of proliferation and cytokine production after activation with phorbol myristate acetate and Ca2+ ionophore, indicating that a direct activation of a protein kinase C-dependent pathway can overcome the tolerizing effect of IL-10. Taken together, these data demonstrate that IL-10 induces T cell anergy and therefore may play an important role in the induction and maintenance of antigen-specific T cell tolerance.


2000 ◽  
Vol 68 (3) ◽  
pp. 1480-1484 ◽  
Author(s):  
Hana Kovářová ◽  
Lenka Hernychová ◽  
Marián Hajdúch ◽  
M. Šírová ◽  
Aleš Macela

ABSTRACT The implication of the Bcg locus in the control of natural resistance to infection with a live vaccine strain (LVS) of the intracellular pathogen Francisella tularensis was studied. Analysis of phenotypic expression of natural resistance and susceptibility was performed using mouse strains congenic at theBcg locus. Comparison of the kinetics of bacterial colonization of spleen showed that B10.A.Bcg(r) mice were extremely susceptible during early phases of primary sublethal infection, while their congenic C57BL/10N [Bcg(s)] counterparts could be classified as resistant to F. tularensis LVS infection according to the 2-log-lower bacterial CFU within the tissue as long as 5 days after infection. Different phenotypes of Bcg congenic mice were associated with differential expression of the cytokines tumor necrosis factor alpha, interleukin-10, and gamma interferon and production of reactive oxygen intermediates. These results strongly suggest that the Bcglocus, which is close or identical to the Nramp1 gene, controls natural resistance to infection by F. tularensisand that its effect is the opposite of that observed for otherBcg-controlled pathogens.


1999 ◽  
Vol 67 (9) ◽  
pp. 4435-4442 ◽  
Author(s):  
Ching Li ◽  
Inés Corraliza ◽  
Jean Langhorne

ABSTRACT Infection of interleukin-10 (IL-10)-nonexpressing (IL-10−/−) mice with Plasmodium chabaudi chabaudi (AS) leads to exacerbated pathology in female mice and death in a proportion of them. Hypoglycemia, hypothermia, and loss in body weight were significantly greater in female IL-10−/−mice than in male knockout mice and all wild-type (WT) mice during the acute phase of infection. At this time, both female and male IL-10−/− mice produced more gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-12p40 mRNA than their respective WT counterparts. Inactivation of IFN-γ in IL-10−/− mice by the injection of anti-IFN-γ antibodies or by the generation of IL-10−/− IFN-γ receptor−/− double-knockout mice resulted in reduced mortality but did not affect body weight, temperature, or blood glucose levels. The data suggest that IFN-γ-independent pathways may be responsible for these pathological features of P. chabaudimalaria and may be due to direct stimulation of TNF-α by the parasite. Since male and female knockout mice both produce more inflammatory cytokines than their WT counterparts, it is likely that the mortality seen in females is due to the nature or magnitude of the response to these cytokines rather than the amount of IFN-γ or TNF-α produced.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248484
Author(s):  
Ena Bula-Oyola ◽  
Juan-Manuel Belda-Lois ◽  
Rosa Porcar-Seder ◽  
Álvaro Page

Introduction People with ulnar, radial or median nerve injuries can present significant impairment of their sensory and motor functions. The prescribed treatment for these conditions often includes electrophysical therapies, whose effectiveness in improving symptoms and function is a source of debate. Therefore, this systematic review aims to provide an integrative overview of the efficacy of these modalities in sensorimotor rehabilitation compared to placebo, manual therapy, or between them. Methods We conducted a systematic review according to PRISMA guidelines. We perform a literature review in the following databases: Biomed Central, Ebscohost, Lilacs, Ovid, PEDro, Sage, Scopus, Science Direct, Semantic Scholar, Taylor & Francis, and Web of Science, for the period 1980–2020. We include studies that discussed the sensorimotor rehabilitation of people with non-degenerative ulnar, radial, or median nerve injury. We assessed the quality of the included studies using the Risk of Bias Tool described in the Cochrane Handbook of Systematic Reviews of Interventions and the risk of bias across studies with the GRADE approach described in the GRADE Handbook. Results Thirty-eight studies were included in the systematic review and 34 in the meta-analysis. The overall quality of evidence was rated as low or very low according to GRADE criteria. Low-level laser therapy and ultrasound showed favourable results in improving symptom severity and functional status compared to manual therapy. In addition, the low level laser showed improvements in pinch strength compared to placebo and pain (VAS) compared to manual therapy. Splints showed superior results to electrophysical modalities. The clinical significance of the results was assessed by effect size estimation and comparison with the minimum clinically important difference (MCID). Conclusions We found favourable results in pain relief, improvement of symptoms, functional status, and neurophysiological parameters for some electrophysical modalities, mainly when applied with a splint. Our results coincide with those obtained in some meta-analyses. However, none of these can be considered clinically significant. Trial registration PROSPERO registration number CRD42020168792; https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=168792.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9851
Author(s):  
Jian Ma ◽  
Ali Mujtaba Shah ◽  
Zhisheng Wang ◽  
Rui Hu ◽  
Huawei Zou ◽  
...  

Background Yak (Bos grunniens) is an ancient bovine species on the Qinghai-Tibetan Plateau. Due to extremely harsh condition in the plateau, the growth retardation of yaks commonly exist, which can reduce the incomes of herdsman. The gastrointestinal barrier function plays a vital role in the absorption of nutrients and healthy growth. Functional deficiencies of the gastrointestinal barrier may be one of the contributors for yaks with growth retardation. Methods To this end, we compared the growth performance and gastrointestinal barrier function of growth-retarded (GRY) and normal yaks (GNY) based on average daily gain (ADG), serum parameters, tissue slice, real-time PCR, and western blotting, with eight yaks in each group. Results GRY exhibited lower (P < 0.05) average daily gain as compared to GNY. The diamine oxidase, D-lactic acid, and lipopolysaccharide concentrations in the serum of GRY were significantly higher (P < 0.05) than those of GNY. Compared to GNY, the papillae height in the rumen of GRY exhibited lower (P = 0.004). In jejunum, with the exception of higher villus height, width, and surface area in GNY, numerical difference (P = 0.61) was detected between two groups for crypt depth. Both in rumen and jejunum, the mRNA expression of interleukin-1beta in GRY was markedly higher (P < 0.05) than that in GNY, but an opposite trend was found in interleukin-10 expression. Moreover, GRY showed a higher (P < 0.05) tumor necrosis factor-alpha mRNA expression in the rumen. The claudin-1 (CLDN1), occludin (OCLN), and zonula occludens-1 (ZO1) expressions of GRY in rumen and jejunum were significantly down-regulated (P < 0.05) as compared to GNY. The correlation analysis identified that in rumen and jejunum, there was a positive correlation between interleukin-10 and CLDN1, OCLN, and ZO1 mRNA expressions, but the tumor necrosis factor-alpha was negatively correlated with CLDN1, OCLN, and ZO1. In the rumen, the ADG was positively correlated with papillae surface area, and a same relationship between ADG and CLDN1, OCLN, and ZO1 expressions was found. Conclusion The results indicated that the ruminal and jejunal barrier functions of GRY are disrupted as compared to GNY. In addition, our study provides a potential solution for promoting the growth of GRY by enhancing the gastrointestinal barrier function.


Sign in / Sign up

Export Citation Format

Share Document