scholarly journals A Compendium of in vitro Germination Media for Pollen Research

2021 ◽  
Vol 12 ◽  
Author(s):  
Donam Tushabe ◽  
Sergey Rosbakh

The correct choice of in vitro pollen germination media (PGM) is crucial in basic and applied pollen research. However, the methodological gaps (e.g., strong focus of current research on model species and cultivated plants along with the lack of general rules for developing a PGM) makes experimenting with pollen difficult. We closed these gaps by compiling a compendium of optimized in vitro PGM recipes from more than 1800 articles published in English, German, and Russian from 1926 to 2019. The compendium includes 1572 PGM recipes successfully used to germinate pollen grains or produce pollen tubes in 816 species representing 412 genera and 114 families (both monocots and dicots). Among the 110 components recorded from the different PGM recipes, sucrose (89% of species), H3BO3 (77%), Ca2+ (59%), Mg2+ (44%), and K+ (39%) were the most commonly used PGM components. PGM pH was reported in 35% of all studies reviewed. Also, we identified some general rules for creating PGM for various groups of species differing in area of research (wild and cultivated species), phylogenetic relatedness (angiosperms vs. gymnosperms, dicots vs. monocots), pollen physiology (bi- and tri-cellular), biochemistry (starchy vs. starchless pollen grains), and stigma properties (dry vs. wet), and compared the component requirements. Sucrose, calcium, and magnesium concentrations were significantly different across most categories indicating that pollen sensitivity to sugar and mineral requirements in PGM is highly group-specific and should be accounted for when composing new PGM. This compendium is an important data resource on PGM and can facilitate future pollen research.

Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


Author(s):  
Solmaz Zakhireh ◽  
Yadollah Omidi ◽  
Younes Beygi-Khosrowshahi ◽  
Ayoub Aghanejad ◽  
Jaleh Barar ◽  
...  

Recently, pollen grains (PGs) have been introduced as drug carriers and scaffolding building blocks. This study aimed to assess the in-vitro biocompatibility of Pistacia vera L. hollow PGs/Fe3O4 nanoparticles (HPGs/Fe3O4NPs) composites using human adipose-derived mesenchymal stem cells (hAD-MSCs). In this regard, iron oxide nanoparticles (Fe3O4NPs) were assembled on the surface of HPGs at different concentrations. The biocompatibility of the prepared composites was assessed through MTT assay, apoptosis-related gene expression and field emission scanning electron microscopy (FE-SEM) analysis. Compared to the bare HPGs, the HPGs/Fe3O4NPs exhibited a biphasic impact on hAD-MSCs. The composite containing 1% Fe3O4NPs demonstrated no cytotoxicity up to 21 days while higher Fe3O4NPs contents and long-term exposure revealed adverse effects on the hAD-MSCs’ growth. The obtained result was verified by the qRT-PCR and morphological analysis carried out through FE-SEM which suggests that a narrow region below 1% Fe3O4NPs may be the optimum choice for medicinal applications of HPGs/Fe3O4NPs microdevices.


2016 ◽  
Vol 11 (12) ◽  
pp. 1040-1047 ◽  
Author(s):  
Albino Corazza Kaefer Kaian ◽  
Chiapetti Ricardo ◽  
Foga ccedil a Luciana ◽  
Luis Muller Alexandre ◽  
Borghetti Calixto Guilherme ◽  
...  
Keyword(s):  

2007 ◽  
Vol 97 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Khalid Amari ◽  
Lorenzo Burgos ◽  
Vicente Pallas ◽  
María Amelia Sanchez-Pina

The route of infection and the pattern of distribution of Prunus necrotic ringspot virus (PNRSV) in apricot pollen were studied. PNRSV was detected both within and on the surface of infected pollen grains. The virus invaded pollen during its early developmental stages, being detected in pollen mother cells. It was distributed uniformly within the cytoplasm of uni- and bicellular pollen grains and infected the generative cell. In mature pollen grains, characterized by their triangular shape, the virus was located mainly at the apertures, suggesting that PNRSV distribution follows the same pattern as the cellular components required for pollen tube germination and cell wall tube synthesis. PNRSV also was localized inside pollen tubes, especially in the growth zone. In vitro experiments demonstrated that infection with PNRSV decreases the germination percentage of pollen grains by more than half and delays the growth of pollen tubes by ≈24 h. However, although PNRSV infection affected apricot pollen grain performance during germination, the presence of the virus did not completely prevent fertilization, because the infected apricot pollen tubes, once germinated, were able to reach the apricot embryo sacs, which, in the climatic conditions of southeastern Spain, mature later than in other climates. Thus, infected pollen still could play an important role in the vertical transmission of PNRSV in apricot.


2020 ◽  
Author(s):  
Breygina Maria ◽  
Klimenko Ekaterina ◽  
Shilov Eugeny ◽  
Mamaeva Anna ◽  
Zgoda Viktor ◽  
...  

1.AbstractROS are known to be accumulated in stigmas of different species and can possibly perform different functions in plant reproduction. Here we confirm the assumption that they affect pollen by altering ion transport through the plasma membrane; as a more deferred effect, pollen proteome is modified. We detected ROS in stigma exudate, found hyperpolarization in exudate-treated growing pollen tubes and used flow cytometry of pollen protoplasts to compare the effects of fresh exudate and exogenous H2O2 on pollen tube plasmalemma. Exudate causes plasmalemma hyperpolarization similar to the one provoked by H2O2, which is abolished by catalase treatment and ROS quencher MnTMPP. Inhibitory analysis indicates the participation of Ca2+- and K+-conducting channels in the observed hyperpolarization, linking obtained data with previous patch-clamp studies in vitro. For a deeper understanding of pollen response to ROS we analyzed proteome alterations in H2O2-treated pollen grains. We found 50 unique proteins and 20 differently accumulated proteins that are mainly involved in cell metabolism, energetics, protein synthesis and folding. Thus, pollen is getting ready for effective resource usage, construction of cellular components and rapid growth.HighlightsThe active substance in stigma exudate is H2O2H2O2 causes hyperpolarization mediated by the activation of cation channels.H2O2 affects pollen proteome; we found 50 unique proteins.


2020 ◽  
Vol 18 (2) ◽  
pp. 307-319
Author(s):  
Hoang Thanh Tung ◽  
Truong Hoai Phong ◽  
Phan Le Ha Nguyen ◽  
Luong Thien Nghia ◽  
Ha Thi My Ngan ◽  
...  

In plant tissue culture, iron nanoparticles (FeNPs) was one of the first types of nano to be used in plants. Previous reports have identified the effect of FeNPs on many different plant species. In this study, FeNPs was used to replace Fe-EDTA in MS (Murashige, Skoog, 1962) medium to assess their effects on growth, chlorophyll (a, b and a+b) accumulation, antioxidant activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD) enzymes, and acclimatization in greenhouse conditions in different culture systems (in vitro solid, in vitro hydroponic and microponic culture). The obtained results show that FeNPs added to MS medium was higher growth, chlorophyll (a, b and a+b) content, antioxidant activity of SOD and APX enzymes than Fe-EDTA in MS medium as control treatment. The effect of FeNPs are differences between culture systems. In vitro solid and microponic culture systems, the optimal concentration is 75 mM FeNPs and in vitro hydroponic culture system is 100 mM FeNPs. The optimal activity of the antioxidant enzyme SOD (35.04 U.mg−1 prot) obtained in the roots of cultured plants in microponic culture system; meanwhile, the optimal activity of the antioxidant enzyme APX (2.11 μmol.min−1.mg−1 prot) obtained in leaves cultivated in solid culture system. The plantlets derived from MS medium added FeNPs were transfered into greenhouse conditions, the microponic cultivated plants supplemented with FeNPs at a concentration of 100 mM gave the highest survival rate (94.67%). The results of this study showed that FeNPs can replace Fe-EDTA salt in MS medium, and iron deficiency in culture media will reduce chlorophyll content.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7421 ◽  
Author(s):  
Kinga Klára Mátyás ◽  
Géza Hegedűs ◽  
János Taller ◽  
Eszter Farkas ◽  
Kincső Decsi ◽  
...  

The highly allergenic and invasive weed Ambrosia artemisiifolia L. is a monoecius plant with separated male and female flowers. The genetic regulation of floral morphogenesis is a less understood field in the reproduction biology of this species. Therefore the objective of this work was to investigate the genetic control of sex determination during floral organogenesis. To this end, we performed a genome-wide transcriptional profiling of vegetative and generative tissues during the plant development comparing wild-growing and in vitro cultivated plants. RNA-seq on Illumina NextSeq 500 platform with an integrative bioinformatics analysis indicated differences in 80 floral gene expressions depending on photoperiodic and endogenous initial signals. Sex specificity of genes was validated based on RT-qPCR experiments. We found 11 and 16 uniquely expressed genes in female and male transcriptomes that were responsible particularly to maintain fertility and against abiotic stress. High gene expression of homologous such as FD, FT, TFL1 and CAL, SOC1, AP1 were characteristic to male and female floral meristems during organogenesis. Homologues transcripts of LFY and FLC were not found in the investigated generative and vegetative tissues. The repression of AP1 by TFL1 homolog was demonstrated in male flowers resulting exclusive expression of AP2 and PI that controlled stamen and carpel formation in the generative phase. Alterations of male and female floral meristem differentiation were demonstrated under photoperiodic and hormonal condition changes by applying in vitro treatments.


Sign in / Sign up

Export Citation Format

Share Document